108 research outputs found

    Do animal models of brain tumors replicate human peritumoral edema? a systematic literature search

    Get PDF
    Introduction Brain tumors cause morbidity and mortality in part through peritumoral brain edema. The current main treatment for peritumoral brain edema are corticosteroids. Due to the increased recognition of their side-effect profile, there is growing interest in finding alternatives to steroids but there is little formal study of animal models of peritumoral brain edema. This study aims to summarize the available literature. Methods A systematic search was undertaken of 5 literature databases (Medline, Embase, CINAHL, PubMed and the Cochrane Library). The generic strategy was to search for various terms associated with “brain tumors”, “brain edema” and “animal models”. Results We identified 603 reports, of which 112 were identified as relevant for full text analysis that studied 114 peritumoral brain edema animal models. We found significant heterogeneity in the species and strain of tumor-bearing animals, tumor implantation method and edema assessment. Most models did not produce appreciable brain edema and did not test for observable manifestations thereof. Conclusion No animal model currently exists that enable the investigation of novel candidates for the treatment of peritumoral brain edema. With current interest in alternative treatments for peritumoral brain edema, there is an unmet need for clinically relevant animal models

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science

    MIXED CHALCOGEN CARBONYL-COMPOUNDS .2. SYNTHESIS AND CHARACTERIZATION OF FE2RU(MU-3-SE)-(MU-3-TE)(CO)9 AND (ETA-5-C5H5)COFE2(MU-3-SE)(MU-3-TE)(CO)6

    No full text
    The new mixed metal complexes, each containing bridging selenium and tellurium ligands in the same molecule, Fe2Ru(CO)9(mu-3-Se)(mu-3-Te) and (eta-5-C5H5)CoFe2(CO)6(mu-3-Se)(mu-3-Te) have been prepared from the room temperature reactions of Fe2(CO)6(mu-SeTe) with Ru(CO)4(C2H4) and (C5H5)Co(CO)2, respectively. Reaction of (eta-5-C5H5)CoFe2(CO)6(mu-3-Se)(mu-3-Te) with Pt(PPh3)4 forms the previously known (CO)6Fe2(mu-3-Se)(mu-3-Te)Pt(PPh3)2 and on treatment with NaOMe, followed by acidification, Fe2(CO)6(mu-SeTe) is formed

    The copper(II) complexes di-mu-bromo-bis{[2,6-bis(pyrazol-1-yl)pyridine]perchloratocopper(II)} and [2,6-bis(pyrazol-1-yl)pyridine]dibromocopper(II).

    No full text
    The two title compounds, di-mu-bromo-bis{[2,6-bis(pyrazol-1-yl-kappaN(2))pyridine-kappaN](perchlorato-kappaO)copper(II)}, [Cu(2)Br(2)(ClO(4))(2)(C(11)H(9)N(5))(2)], (I), and [2,6-bis(pyrazol-1-yl)pyridine]dibromocopper(II), [CuBr(2)(C(11)H(9)N(5))], (II), were synthesized by only slight modifications of the same reaction; compound (II) was formed by adding one molar equivalent of pyrazole (C(3)N(2)H(4)) to the reaction mixture of (I). Compound (I) is a bromo-bridged dinuclear copper(II) compound stabilized by weak interactions with the perchlorate anions (ClO(4)(-)), while (II) is a related mononuclear species, which has a distorted square-pyramidal geometry

    Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain

    No full text
    Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the “Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III” of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m− 3 with a daily variability between 2.4 and 5.64 μg m− 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m− 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m− 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m− 2 and + 42.2, + 35.4 and + 34.3 W m− 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day− 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day− 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by residential cooking using biofuels in India. Our study demonstrates the need for immediate, effective regulations and policies that mitigate the emission of BC particles from domestic cooking in rural areas of India
    corecore