77 research outputs found

    Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects

    Full text link
    Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on leadership-class computers for their low-lying eigenstates and eigenfunctions.Comment: 8 pages with 2 figure

    The effect of higher derivative correction on η/s\eta /s and conductivities in STU model

    Full text link
    In this paper we study the ratio of shear viscosity to entropy, electrical and thermal conductivities for the R-charged black hole in STU model. We generalize previous works to the case of a black hole with three different charges. Actually we use diffusion constant to obtain ratio of shear viscosity to entropy. By applying the thermodynamical stability we recover previous results. Also we investigate the effect of higher derivative corrections.Comment: revised versio

    Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations

    Full text link
    We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo simulations employing the bond fluctuation model that maps the chains -- in our case with 64 effective segments -- on a coarse grained lattice. The results obtained through self consistent field calculations and Monte Carlo simulations can be compared because the time, length, and temperature scales are mapped onto each other through the diffusion constant, the chain extension, and the energy of mixing. The quantitative comparison of the relaxation rate of the global structure factor shows that a kinetic coefficient according to the Rouse model gives a much better agreement than a local, i.e. wave vector independent, kinetic factor. Including fluctuations in the self consistent field calculations leads to a shorter time span of spinodal behaviour and a reduction of the relaxation rate for smaller wave vectors and prevents the relaxation rate from becoming negative for larger values of the wave vector. This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin

    Basic kinetic wealth-exchange models: common features and open problems

    Get PDF
    We review the basic kinetic wealth-exchange models of Angle [J. Angle, Social Forces 65 (1986) 293; J. Math. Sociol. 26 (2002) 217], Bennati [E. Bennati, Rivista Internazionale di Scienze Economiche e Commerciali 35 (1988) 735], Chakraborti and Chakrabarti [A. Chakraborti, B. K. Chakrabarti, Eur. Phys. J. B 17 (2000) 167], and of Dragulescu and Yakovenko [A. Dragulescu, V. M. Yakovenko, Eur. Phys. J. B 17 (2000) 723]. Analytical fitting forms for the equilibrium wealth distributions are proposed. The influence of heterogeneity is investigated, the appearance of the fat tail in the wealth distribution and the relaxation to equilibrium are discussed. A unified reformulation of the models considered is suggested.Comment: Updated version; 9 pages, 5 figures, 2 table

    Multi-color Optical Variability of the TeV Blazar Mrk 501 in the Low-State

    Full text link
    We report results based on the monitoring of the BL Lac object Mrk 501 in the optical (B, V and R) passbands from March to May 2000. Observations spread over 12 nights were carried out using 1.2 meter Mount Abu Telescope, India and 61 cm Telescope at Sobaeksan Astronomy Observatory, South Korea. The aim is to study the intra-day variability (IDV), short term variability and color variability in the low state of the source. We have detected flux variation of 0.05 mag in the R-band in time scale of 15 min in one night. In the B and V passbands, we have less data points and it is difficult to infer any IDVs. Short term flux variations are also observed in the V and R bands during the observing run. No significant variation in color (B-R) has been detected but (V-R) shows variation during the present observing run. Assuming the shortest observed time scale of variability (15 min) to represent the disk instability or pulsation at a distance of 5 Schwarschild radii from the black hole (BH), mass of the central BH is estimated \sim 1.20 ×\times 108M^{8} M_{\odot}.Comment: 4 figures, 4 tables, Accepted for publication in New Astronom

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the WW production cross section in p anti-p collisions at s**(1/2) = 1.96 TeV

    Get PDF
    We present a measurement of the W boson pair-production cross section in p anti-p collisions at a center-of-mass energy of sqrt{s}=1.96 TeV. The data, collected with the Run II DO detector, correspond to an integrated luminosity of 224-252 pb^-1 depending on the final state (ee, emu or mumu). We observe 25 candidates with a background expectation of 8.1+/-0.6(stat)+/-0.6(syst)+/-0.5(lum) events. The probability for an upward fluctuation of the background to produce the observed signal is 2.3x10^-7, equivalent to 5.2 standard deviations.The measurement yields a cross section of 13.8+4.3/-3.8(stat)+1.2/-0.9(syst)+/-0.9(lum) pb, in agreement with predictions from the standard model.Comment: submitted to PR

    Measurement of the Lambda^0_b lifetime in the decay Lambda^0_b -> J/psi Lambda^0 with the D0 Detector

    Get PDF
    We present measurements of the Lambda^0_b lifetime in the exclusive decay channel Lambda^0_{b}->J/psi Lambda^0, with J/psi to mu+ mu- and Lambda^0 to p pi-, the B^0 lifetime in the decay B^0 -> J/psi K^0_S with J/psi to mu+ mu- and K^0_S to pi+ pi-, and the ratio of these lifetimes. The analysis is based on approximately 250 pb^{-1} of data recorded with the D0 detector in pp(bar) collisions at sqrt{s}=1.96 TeV. The Lambda^0_b lifetime is determined to be tau(Lambda^0_b) = 1.22 +0.22/-0.18 (stat) +/- 0.04 (syst) ps, the B^0 lifetime tau(B^0) = 1.40 +0.11/-0.10 (stat) +/- 0.03 (syst) ps, and the ratio tau(Lambda^0_b)/tau(B^0) = 0.87 +0.17/-0.14 (stat) +/- 0.03 (syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda^0_b lifetime based on a fully reconstructed decay channel.Comment: 7 pages, 4 figures, Submitted to Physical Review Letters, v2: Added FNAL Pub-numbe
    corecore