27 research outputs found

    Abstract title: times new roman, 10 Pt, bold

    Get PDF
    phase analysis and approximation methods. The methods of scenario analysis presents forecast of development of lowrise construction, as well as the estimated availability levels of low-rise housing and population given its forecast for the development

    Beyond the second order magnetic anisotropy tensor: Higher-order components due to oriented magnetite exsolutions in pyroxenes, and implications for paleomagnetic and structural interpretations

    Get PDF
    Exsolved iron oxides in silicate minerals can be nearly ideal paleomagnetic recorders, due to their single-domain-like behaviour and the protection from chemical alteration by their surrounding silicate host. Because their geometry is crystallographically controlled by the host silicate, these exsolutions possess a shape preferred orientation that is ultimately controlled by the mineral fabric of the silicates. This leads to potentially significant anisotropic acquisition of remanence, which necessitates correction to make accurate interpretations in paleodirectional and paleointensity studies. Here, we investigate the magnetic shape anisotropy carried by magnetite exsolutions in pyroxene single crystals, and in pyroxene-bearing rocks based on torque measurements and rotational hysteresis data. Image analysis is used to characterize the orientation distribution of oxides, from which the observed anisotropy can be modelled. Both the high-field torque signal and corresponding models contain components of higher order, which cannot be accurately described by second order tensors usually employed to describe magnetic fabrics. Conversely, low-field anisotropy data do not show this complexity and can be adequately described with second-order tensors. Hence, magnetic anisotropy of silicate-hosted exsolutions is field-dependent and this should be taken into account when interpreting isolated ferromagnetic fabrics, and in anisotropy corrections

    Palaeoenvironments and palaeoceanography changes across the Jurassic/Cretaceous boundary in the Arctic realm: case study of the Nordvik section (north Siberia, Russia)

    Get PDF
    The Jurassic/Cretaceous transition was accompanied by significant changes in palaeoceanography and palaeoenvironments in the Tethyan Realm, but outside the Tethys such data are very scarce. Here we present results of a study of the most complete section in the Panboreal Superrealm, the Nordvik section. Belemnite d18O data show an irregular decrease from values reaching up to 1.6 in the Middle Oxfordian and from 0.8 to 1.7 in the basal Ryazanian, indicating a prolonged warming. The biodiversity changes were strongly related to sea-level oscillations, showing a relatively low belemnite and high ammonite diversity during sea-level rise, accompanied by a decrease of the macrobenthos taxonomical richness. The most prominent sea-level rise is marked by the occurrence of open sea ammonites with Pacific affinities. Peak abundances of spores and prasinophytes correlate with a negative excursion in organic carbon d13C near the J/K boundary and could reflect blooms of green algae caused by disturbance of the marine ecosystem.Web of Science33art. no. 1971

    Palaeoenvironments and palaeoceanography changes across the Jurassic/Cretaceous boundary in the Arctic realm: case study of the Nordvik section (north Siberia, Russia)

    Get PDF
    The Jurassic/Cretaceous transition was accompanied by significant changes in palaeoceanography and palaeoenvironments in the Tethyan Realm, but outside the Tethys such data are very scarce. Here we present results of a study of the most complete section in the Panboreal Superrealm, the Nordvik section. Belemnite d18O data show an irregular decrease from values reaching up to 1.6 in the Middle Oxfordian and from 0.8 to 1.7 in the basal Ryazanian, indicating a prolonged warming. The biodiversity changes were strongly related to sea-level oscillations, showing a relatively low belemnite and high ammonite diversity during sea-level rise, accompanied by a decrease of the macrobenthos taxonomical richness. The most prominent sea-level rise is marked by the occurrence of open sea ammonites with Pacific affinities. Peak abundances of spores and prasinophytes correlate with a negative excursion in organic carbon d13C near the J/K boundary and could reflect blooms of green algae caused by disturbance of the marine ecosystem.Web of Science33art. no. 1971

    Palaeoenvironments and palaeoceanography changes across the Jurassic/Cretaceous boundary in the Arctic realm: case study of the Nordvik section (north Siberia, Russia)

    Get PDF
    The Jurassic/Cretaceous transition was accompanied by significant changes in palaeoceanography and palaeoenvironments in the Tethyan Realm, but outside the Tethys such data are very scarce. Here we present results of a study of the most complete section in the Panboreal Superrealm, the Nordvik section. Belemnite d18O data show an irregular decrease from values reaching up to 1.6 in the Middle Oxfordian and from 0.8 to 1.7 in the basal Ryazanian, indicating a prolonged warming. The biodiversity changes were strongly related to sea-level oscillations, showing a relatively low belemnite and high ammonite diversity during sea-level rise, accompanied by a decrease of the macrobenthos taxonomical richness. The most prominent sea-level rise is marked by the occurrence of open sea ammonites with Pacific affinities. Peak abundances of spores and prasinophytes correlate with a negative excursion in organic carbon d13C near the J/K boundary and could reflect blooms of green algae caused by disturbance of the marine ecosystem.Web of Science33art. no. 1971

    Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy

    Get PDF
    The fieldwork was supported by the DIPS project (grant no. 240467) and the MIMES project (grant no. 244155) funded by the Norwegian Research Council awarded to O.G. O.P.'s position was funded from Y-TEC.Anisotropy of magnetic susceptibility (AMS) and anisotropy of magnetic remanence (AARM and AIRM) are efficient and versatile techniques to indirectly determine rock fabrics. Yet, deciphering the source of a magnetic fabric remains a crucial and challenging step, notably in the presence of ferrimagnetic phases. Here we use X-ray micro-computed tomography to directly compare mineral shape-preferred orientation and spatial distribution fabrics to AMS, AARM and AIRM fabrics from five hypabyssal trachyandesite samples. Magnetite grains in the trachyandesite are euhedral with a mean aspect ratio of 1.44 (0.24 s.d., long/short axis), and > 50% of the magnetite grains occur in clusters, and they are therefore prone to interact magnetically. Amphibole grains are prolate with magnetite in breakdown rims. We identified three components of the petrofabric that influence the AMS of the analyzed samples: the magnetite and the amphibole shape fabrics and the magnetite spatial distribution. Depending on their relative strength, orientation and shape, these three components interfere either constructively or destructively to produce the AMS fabric. If the three components are coaxial, the result is a relatively strongly anisotropic AMS fabric (P’ = 1.079). If shape fabrics and/or magnetite distribution are non-coaxial, the resulting AMS is weakly anisotropic (P’ = 1.012). This study thus reports quantitative petrofabric data that show the effect of magnetite distribution anisotropy on magnetic fabrics in igneous rocks, which has so far only been predicted by experimental and theoretical models. Our results have first-order implications for the interpretation of petrofabrics using magnetic methods.Publisher PDFPeer reviewe

    Astronomy and Musaeum Mathematicum at Clementinum College in Prague

    Get PDF

    Velký kaňon v Arizoně

    No full text
    12212

    Astronomy and Musaeum Mathematicum at Clementinum College in Prague

    Get PDF
    corecore