71 research outputs found

    Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides

    Get PDF
    Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.</p

    Editorial Statement About JCCAP’s 2023 Special Issue on Informant Discrepancies in Youth Mental Health Assessments: Observations, Guidelines, and Future Directions Grounded in 60 Years of Research

    Get PDF
    Issue 1 of the 2011 Volume of the Journal of Clinical Child and Adolescent Psychology (JCCAP) included a Special Section about the use of multi-informant approaches to measure child and adolescent (i.e., hereafter referred to collectively as “youth”) mental health (De Los Reyes, 2011). Researchers collect reports from multiple informants or sources (e.g., parent and peer, youth and teacher) to estimate a given youth’s mental health. The 2011 JCCAP Special Section focused on the most common outcome of these approaches, namely the significant discrepancies that arise when comparing estimates from any two informant’s reports (i.e., informant discrepancies). These discrepancies appear in assessments conducted across the lifespan (Achenbach, 2020). That said, JCCAP dedicated space to understanding informant discrepancies, because they have been a focus of scholarship in youth mental health for over 60 years (e.g., Achenbach et al., 1987; De Los Reyes & Kazdin, 2005; Glennon & Weisz, 1978; Kazdin et al., 1983; Kraemer et al., 2003; Lapouse & Monk, 1958; Quay et al., 1966; Richters, 1992; Rutter et al., 1970; van der Ende et al., 2012). Thus, we have a thorough understanding of the areas of research for which they reliably appear when clinically assessing youth. For instance, intervention researchers observe informant discrepancies in estimates of intervention effects within randomized controlled trials (e.g., Casey & Berman, 1985; Weisz et al., 2017). Service providers observe informant discrepancies when working with individual clients, most notably when making decisions about treatment planning (e.g., Hawley & Weisz, 2003; Hoffman & Chu, 2015). Scholars in developmental psychopathology observe these discrepancies when seeking to understand risk and protective factors linked to youth mental health concerns (e.g., Hawker & Boulton, 2000; Hou et al., 2020; Ivanova et al., 2022). Thus, the 2011 JCCAP Special Section posed a question: Might these informant discrepancies contain data relevant to understanding youth mental health? Suppose none of the work in youth mental health is immune from these discrepancies. In that case, the answer to this question strikes at the core of what we produce―from the interventions we develop and implement, to the developmental psychopathology research that informs intervention development

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Projection of forelimb nerve afferents to external cuneate nucleus of the rat as revealed by intraneural injection of a neurotoxic lectin, Ricinus communis agglutinin

    No full text
    This study seeks to extend the observations of previous studies of projection of primary afferent fibres from the forelimb nerves and muscles to the external cuneate nucleus (ECN) of mammals using a neurotoxic lectin, Ricinus communis agglutinin (RCA) to achieve chemical ganglionectomy of the dorsal root ganglia. Following intraneural injection of RCA into the three main forelimb nerves, namely the radial, ulnar and median nerves, terminal degeneration of the primary afferent fibres in the ECN was studied under the light microscope by means of the Fink-Heimer method. The results show that the primary afferent fibres from these three nerves project to the media1 part of the ECN. The field of terminal degeneration take a crescentic form. The projection from the median nerve was most dorsally located whereas that from the radial nerve was the most ventral with extensive overlaps between them. Of the three nerves, the projection from the radial nerve was the most dense. Rostrocaudally, the three nerves also show extensive overlaps. The rostrocaudal extent of maximum terminal degeneration was greatest for the radial neme and least for the median nerve. Analysis of variance showed that these differences were statistically significant. This suggests that the radial nerve has the most extensive projection to the ECN and the median nerve the least

    Low-temperature, high-performance thin-film solid oxide fuel cells with tailored nano-column structures of a sputtered Ni anode

    No full text
    A nanostructured electrode for use in low-temperature solid oxide fuel cells has drawn attention due to its high activity. Among various nanostructure fabrication processes, sputtering has shown superior characteristics for nanostructured electrode fabrication and does not require high temperatures. However, the limited performance of sputtered Ni-based anodes and the current lack of a fundamental understanding of nanostructural control remain significant issues. Here, the fabrication process for a high-performance nanostructured Ni anode that works by tailoring a nano-column structure is presented. Controlling the sputtering deposition angle and rotation speed of the substrate significantly improves the in-plane connectivity of the nanostructured Ni anode, resulting in a 50% enhancement in the peak power density of the cell. The maximum performance of the cell with the tailored anode nanostructure was 304 and 477 mW cm−2 at 450 and 500 °C, respectively, which represents the best recorded performance of an anodic aluminum oxide (AAO)-supported Ni-based thin-film SOFC. Further investigation via 1-dimensional simulation showed that the enhancement in the in-plane continuity of the columnar anode structure dominantly affects the performance of TF-SOFCs, which means that the novel process is promising for practical applications of nano-energy devices fabricated by sputtering

    Validation of defect association energy on modulating oxygen ionic conductivity in low temperature solid oxide fuel cell

    No full text
    The defect association modifies the energy barrier for oxygen ion hopping between the vacancies, which is sensitive to the dopant ionic size in the CeO2-δ. Here, the work focuses on the co-dopant strategy of M0.1Sm0.1Ce0.8O2-δ (M = Yb, Gd, Sm, Nd, La) to study the defect association energy, and its subsequent effect on ionic conduction and power density. The electrolyte material with different co-dopants modifies the lattice parameter and bond length of cation–anion, which changes the defect–dopant interactions. Among the tested dopant, Nd0.1Sm0.1Ce0.8O2-δ exhibits the highest ionic conductivity of 34 mS cm−1 at 550 °C, which is nearly 2.3 times higher than the conventional Sm0.2Ce0.8O2-δ. This experimental observation validates the theoretically proposed concept of the balanced defect–dopant interactions at different sites leading to the reduction in defect association enthalpy. The experimental results were rationalized by calculating the defect association enthalpy for the co-doped system using density functional theory via one-cell method. The cell with Nd0.1Sm0.1Ce0.8O2-δ as an electrolyte shows a peak power density of 466 mW cm−2 at 550 °C, which is twice higher than the cell containing standard Sm0.2Ce0.8O2-δ electrolyte (212 mW cm−2). The results confirm that Nd0.1Sm0.1Ce0.8O2-δ is the potential electrolyte for low temperature SOFC operation. (Graphical abstract available) Erratum for Table1: The Publisher regrets that due to a production error Table 1 was incorrect in the above published article. Table 1. The ASR values obtained for button-type cells with various co-doped CeO2-δ electrolytes are also shown. The correct Table 1 is shown at DOI: https://dx.doi.org/10.1016/j.jpowsour.2020.22933

    Plasma Driven Exsolution for Nanoscale Functionalization of Perovskite Oxides

    No full text
    Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing
    corecore