856 research outputs found

    The Warriors Return

    Get PDF
    Title surrounded by elaborate designhttps://scholarsjunction.msstate.edu/cht-sheet-music/13649/thumbnail.jp

    Weak antilocalization in high mobility Ga(x)In(1-x)As/InP two-dimensional electron gases with strong spin-orbit coupling

    Get PDF
    We have studied the spin-orbit interaction in a high mobility two-dimensional electron gas in a GaInAs/InP heterostructure as a function of an applied gate voltage as well as a function of temperature. Highly sensitive magnetotransport measurements of weak antilocalization as well as measurements of Shubnikov--de Haas oscillations were performed in a wide range of electron sheet concentrations. In our samples the electron transport takes place in the strong spin precession regime in the whole range of applied gate voltages, which is characterized by the spin precession length being shorter than the elastic mean free path. The magnitude of the Rashba spin-orbit coupling parameter was determined by fitting the experimental curves by a simulated quantum conductance correction according to a model proposed recently by Golub [Phys. Rev. B 71, 235310 (2005)]. A comparison of the Rashba coupling parameter extracted using this model with the values estimated from the analysis of the beating pattern in the Shubnikov--de Haas oscillations showed a good agreement.Comment: 5 pages, 5 figures, accepted for publication in Phys.Rev.

    The sky distribution of 511 keV positron annihilation line emission as measured with INTEGRAL/SPI

    Get PDF
    The imaging spectrometer SPI on board ESA's INTEGRAL observatory provides us with an unprecedented view of positron annihilation in our Galaxy. The first sky maps in the 511 keV annihilation line and in the positronium continuum from SPI showed a puzzling concentration of annihilation radiation in the Galactic bulge region. By now, more than twice as many INTEGRAL observations are available, offering new clues to the origin of Galactic positrons. We present the current status of our analyses of this augmented data set. We now detect significant emission from outside the Galactic bulge region. The 511 keV line is clearly detected from the Galactic disk; in addition, there is a tantalizing hint at possible halo-like emission. The available data do not yet permit to discern whether the emission around the bulge region originates from a halo-like component or from a disk component that is very extended in latitude.Comment: to be published in the proceedings of the 6th INTEGRAL Workshop "The Obscured Universe" (3-7 July 2006, Moscow

    Discrimination between the superconducting gap and the pseudo-gap in Bi2212 from intrinsic tunneling spectroscopy in magnetic field

    Full text link
    Intrinsic tunneling spectroscopy in high magnetic field (HH) is used for a direct test of superconducting features in a quasiparticle density of states of high-TcT_c superconductors. We were able to distinguish with a great clarity two co-existing gaps: (i) the superconducting gap, which closes as H→Hc2(T)H \to H_{c2}(T) and T→Tc(H)T\to T_c(H), and (ii) the cc-axis pseudo-gap, which does not change neither with HH, nor TT. Strikingly different magnetic field dependencies, together with previously observed different temperature dependencies of the two gaps ~\cite{Krasnov}, speak against the superconducting origin of the pseudo-gap.Comment: 4 pages, 4 eps figure

    Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction

    Full text link
    We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechanical Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR

    Evidence for coexistence of the superconducting gap and the pseudo - gap in Bi-2212 from intrinsic tunneling spectroscopy

    Full text link
    We present intrinsic tunneling spectroscopy measurements on small Bi2_2Sr2_2CaCu2_2O8+x_{8+x} mesas. The tunnel conductance curves show both sharp peaks at the superconducting gap voltage and broad humps representing the cc-axis pseudo-gap. The superconducting gap vanishes at TcT_c, while the pseudo-gap exists both above and below TcT_c. Our observation implies that the superconducting and pseudo-gaps represent different coexisting phenomena.Comment: 5 pages, 4 figure

    Performance of a 229 Thorium solid-state nuclear clock

    Full text link
    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.Comment: 28 pages, 9 figure

    Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma.

    Get PDF
    BACKGROUND: To compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence. METHODS: Participants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity. RESULTS: The ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (p≤0.0001) and NY-ESO-1-specific CD4+ and CD8+ responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+ double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants. CONCLUSIONS: The vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
    • …
    corecore