We present magnetotransport calculations for homogeneous two-dimensional
electron systems including the Rashba spin-orbit interaction, which mixes the
spin-eigenstates and leads to a modified fan-chart with crossing Landau levels.
The quantum mechanical Kubo formula is evaluated by taking into account
spin-conserving scatterers in an extension of the self-consistent Born
approximation that considers the spin degree of freedom. The calculated
conductivity exhibits besides the well-known beating in the Shubnikov-de Haas
(SdH) oscillations a modulation which is due to a suppression of scattering
away from the crossing points of Landau levels and does not show up in the
density of states. This modulation, surviving even at elevated temperatures
when the SdH oscillations are damped out, could serve to identify spin-orbit
coupling in magnetotransport experiments. Our magnetotransport calculations are
extended also to lateral superlattices and predictions are made with respect to
1/B periodic oscillations in dependence on carrier density and strength of the
spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR