4,730 research outputs found

    A multibaker map for shear flow and viscous heating

    Full text link
    A consistent description of shear flow and the accompanied viscous heating as well the associated entropy balance is given in the framework of a deterministic dynamical system. A laminar shear flow is modeled by a Hamiltonian multibaker map which drives velocity and temperature fields. In an appropriate macroscopic limit one recovers the Navier-Stokes and heat conduction equations along with the associated entropy balance. This indicates that results of nonequilibrium thermodynamics can be described by means of an abstract, sufficiently chaotic and mixing dynamics. A thermostating algorithm can also be incorporated into this framework.Comment: 11 pages; RevTex with multicol+graphicx packages; eps-figure

    Lyapunov Exponent Pairing for a Thermostatted Hard-Sphere Gas under Shear in the Thermodynamic Limit

    Full text link
    We demonstrate why for a sheared gas of hard spheres, described by the SLLOD equations with an iso-kinetic Gaussian thermostat in between collisions, deviations of the conjugate pairing rule for the Lyapunov spectrum are to be expected, employing a previous result that for a large number of particles NN, the iso-kinetic Gaussian thermostat is equivalent to a constant friction thermostat, up to 1/N1/\sqrt{N} fluctuations. We also show that these deviations are at most of the order of the fourth power in the shear rate.Comment: 4 pages, to appear in Rapid Comm., Phys. Rev.

    Stress reactivity elicits a tissue-specific reduction in telomere length in aging zebrafish (Danio rerio).

    Get PDF
    Individual differences in personality are associated with variation in healthy aging. Health behaviours are often cited as the likely explanation for this association; however, an underlying biological mechanism may also exist. Accelerated leukocyte telomere shortening is implicated in multiple age-related diseases and is associated with chronic activation of the hypothalamus-pituitary-adrenal (HPA) axis, providing a link between stress-related personality differences and adverse health outcomes. However, the effects of the HPA axis are tissue specific. Thus, leukocyte telomere length may not accurately reflect telomere length in disease-relevant tissues. Here, we examined the correlation between stress reactivity and telomere length in heart and brain tissue in young (6-9 month) and aging (18 month) zebrafish. Stress reactivity was assessed by tank diving and through gene expression. Telomere length was assessed using quantitative PCR. We show that aging zebrafish have shorter telomeres in both heart and brain. Telomere length was inversely related to stress reactivity in heart but not brain of aging individuals. These data support the hypotheses that an anxious predisposition contributes to accelerated telomere shortening in heart tissue, which may have important implications for our understanding of age-related heart disease, and that stress reactivity contributes to age-related telomere shortening in a tissue-specific manner

    Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3_3

    Get PDF
    Acceptor and donor doping is a standard for tailoring semiconductors. More recently, doping was adapted to optimize the behavior at ferroelectric domain walls. In contrast to more than a century of research on semiconductors, the impact of chemical substitutions on the local electronic response at domain walls is largely unexplored. Here, the hexagonal manganite ErMnO3_3 is donor doped with Ti4+^{4+}. Density functional theory calculations show that Ti4+^{4+} goes to the B-site, replacing Mn3+^{3+}. Scanning probe microscopy measurements confirm the robustness of the ferroelectric domain template. The electronic transport at both macro- and nanoscopic length scales is characterized. The measurements demonstrate the intrinsic nature of emergent domain wall currents and point towards Poole-Frenkel conductance as the dominant transport mechanism. Aside from the new insight into the electronic properties of hexagonal manganites, B-site doping adds an additional degree of freedom for tuning the domain wall functionality

    L-selectin mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events

    Full text link
    L-selectin mediated tethers result in leukocyte rolling only above a threshold in shear. Here we present biophysical modeling based on recently published data from flow chamber experiments (Dwir et al., J. Cell Biol. 163: 649-659, 2003) which supports the interpretation that L-selectin mediated tethers below the shear threshold correspond to single L-selectin carbohydrate bonds dissociating on the time scale of milliseconds, whereas L-selectin mediated tethers above the shear threshold are stabilized by multiple bonds and fast rebinding of broken bonds, resulting in tether lifetimes on the timescale of 10−110^{-1} seconds. Our calculations for cluster dissociation suggest that the single molecule rebinding rate is of the order of 10410^4 Hz. A similar estimate results if increased tether dissociation for tail-truncated L-selectin mutants above the shear threshold is modeled as diffusive escape of single receptors from the rebinding region due to increased mobility. Using computer simulations, we show that our model yields first order dissociation kinetics and exponential dependence of tether dissociation rates on shear stress. Our results suggest that multiple contacts, cytoskeletal anchorage of L-selectin and local rebinding of ligand play important roles in L-selectin tether stabilization and progression of tethers into persistent rolling on endothelial surfaces.Comment: 9 pages, Revtex, 4 Postscript figures include

    Foot Bone in Vivo: Its Center of Mass and Centroid of Shape

    Get PDF
    This paper studies foot bone geometrical shape and its mass distribution and establishes an assessment method of bone strength. Using spiral CT scanning, with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot bones in vivo and investigate the relationship between the bone's external shape and internal structure. This analysis is explored on the bases of the bone's center of mass and its centroid of shape. We observe the phenomenon of superposition of center of mass and centroid of shape fairly precisely, indicating a possible appearance of biomechanical organism. We investigate two aspects of the geometrical shape, (i) distance between compact bone's centroid of shape and that of the bone and (ii) the mean radius of the same density bone issue relative to the bone's centroid of shape. These quantities are used to interpret the influence of different physical exercises imposed on bone strength, thereby contributing to an alternate assessment technique to bone strength.Comment: 9 pages, 4 figure

    Chaotic hypothesis: Extension of Onsager reciprocity to large fields and the chaotic hypothesis

    Full text link
    The fluctuation theorem (FT), the first derived consequence of the {\it Chaotic Hypothesis} (CH) of ref. [GC1], can be considered as an extension to arbitrary forcing fields of the fluctuation dissipation theorem (FD) and the corresponding Onsager reciprocity (OR), in a class of reversible nonequilibrium statistical mechanical systems.Comment: Revises previous paper with the same title and extends the result

    Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems

    Full text link
    The master equation approach to Lyapunov spectra for many-particle systems is applied to non-equilibrium thermostatted systems to discuss the conjugate pairing rule. We consider iso-kinetic thermostatted systems with a shear flow sustained by an external restriction, in which particle interactions are expressed as a Gaussian white randomness. Positive Lyapunov exponents are calculated by using the Fokker-Planck equation to describe the tangent vector dynamics. We introduce another Fokker-Planck equation to describe the time-reversed tangent vector dynamics, which allows us to calculate the negative Lyapunov exponents. Using the Lyapunov exponents provided by these two Fokker-Planck equations we show the conjugate pairing rule is satisfied for thermostatted systems with a shear flow in the thermodynamic limit. We also give an explicit form to connect the Lyapunov exponents with the time-correlation of the interaction matrix in a thermostatted system with a color field.Comment: 10 page

    Four distinct trajectories of tau deposition identified in Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging
    • …
    corecore