The master equation approach to Lyapunov spectra for many-particle systems is
applied to non-equilibrium thermostatted systems to discuss the conjugate
pairing rule. We consider iso-kinetic thermostatted systems with a shear flow
sustained by an external restriction, in which particle interactions are
expressed as a Gaussian white randomness. Positive Lyapunov exponents are
calculated by using the Fokker-Planck equation to describe the tangent vector
dynamics. We introduce another Fokker-Planck equation to describe the
time-reversed tangent vector dynamics, which allows us to calculate the
negative Lyapunov exponents. Using the Lyapunov exponents provided by these two
Fokker-Planck equations we show the conjugate pairing rule is satisfied for
thermostatted systems with a shear flow in the thermodynamic limit. We also
give an explicit form to connect the Lyapunov exponents with the
time-correlation of the interaction matrix in a thermostatted system with a
color field.Comment: 10 page