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Abstract: Alzheimer’s disease (AD) is characterized by spread of tau pathology throughout the cerebral cortex. The 28 
spreading pattern was thought to be fairly consistent across individuals, though recent work has demonstrated sub-29 
stantial variability in the AD population. Using tau-PET scans from 1612 individuals, we identified four distinct spatio-30 
temporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described 31 
limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal 32 
patterns resembling atypical clinical variants of AD. These "subtypes" were stable during longitudinal follow-up, and 33 
were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic 34 
and cognitive profiles, and differing longitudinal outcomes. Additionally, network diffusion models implicated that 35 
pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our 36 
results suggest variation in tau pathology is common and systematic, perhaps warranting a re-examination of the 37 
notion of "typical AD", and a revisiting of tau pathological staging.  38 
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Introduction 40 

Alzheimer’s disease (AD) is the leading cause of dementia worldwide and prevalence is expected to dou-41 
ble in the next twenty years1. At autopsy, AD presents with diffuse extracellular and neuritic amyloid-β 42 
(Aβ) plaques, and intracellular neurofibrillary tangles and neuropil threads of hyperphosphorylated tau, 43 
along with extensive neurodegeneration2,3. Leading hypotheses have postulated these two hallmark pro-44 
teins, Aβ and tau, either alone or in combination, are causative agents in disease etiology and progres-45 
sion4,5. Cortical tau colocalizes with cortical atrophy and predicts future neurodegeneration6, while the 46 
appearance of tau in specific cognitive networks leads to domain-specific cognitive impairments7. Recent-47 
ly, the focus of treatment discovery has shifted to tau, and numerous therapeutic interventions are cur-48 
rently undergoing research and development. A better understanding of tau pathophysiology is therefore 49 
of imminent need in order to aid development of these interventions. 50 



 

 

Tau tangles are thought to exhibit a stereotypical pattern of cortical spread, which has been formal-51 
ized into the Braak staging system8,9. The six Braak stages describe the first appearance of cortical tau 52 
tangles in the transentorhinal cortex, subsequent spread throughout the medial and basal temporal lobes, 53 
then into neocortical associative regions, and finally into the unimodal sensory and motor cortex9. While 54 
this stereotyped progression was derived from histopathological staining at autopsy, tau can now be 55 
measured in vivo in the human brain using positron emission tomography (PET). Early tau-PET imaging 56 
studies described average spatial patterns that have mostly converged with the Braak staging system10,11. 57 

However, many examples have emerged of individual tau patterns that do not fit neatly into the 58 
Braak staging system. A medial temporal lobe (MTL)-sparing phenotype with extensive cortical tau burden 59 
but limited MTL burden has been described, as well as a limbic-predominant phenotype with most promi-60 
nent tau pathology in limbic and medial temporal cortex, which were found to be associated with specific 61 
patient profiles12–14. In addition, clinical variants of AD have been described that exhibit specific patterns 62 
of pathology that deviate from the Braak staging scheme15, e.g., posterior cortical atrophy (PCA) 16, logo-63 
penic primary progressive aphasia (lvPPA)17, and others18. These latter clinical variants of AD are relatively 64 
uncommon and most frequently associated with early-onset AD, but represent another example of atypi-65 
cal tau patterning. 66 

Taken together, the examples above suggest that, while the Braak staging system appears to be a 67 
good description of tau spreading at the population level, it does not account for systematic variability at 68 
the individual level. Variation in tau patterning may be indicative of distinct underlying neurobiology 19,20, 69 
which may affect treatment response. Different subtypes may also have distinct rates and profiles of cog-70 
nitive decline 21,22, potentially affecting clinical trials. For these reasons, a systematic description of varia-71 
tion in AD pathological spread is needed. Previous studies have provided invaluable information toward 72 
this effort 12,13,23–26, but carry certain limitations. Pathology studies, for example, are limited by spatial 73 
sampling and semi-quantitation. Neuroimaging studies overcome some of those limitations, but often use 74 
non-specific measurements, and rely on methods designed to parse spatial rather than spatiotemporal 75 
variation. 76 

Here we present a systematic characterization of heterogeneity in tau patterning in AD. We 77 
amassed the largest and most diverse sample of tau-PET data to date (n=2324), covering the full clinical 78 
spectrum from asymptomatic through mild cognitive impairment (MCI) to AD dementia, allowing unprec-79 
edented power to detect and characterize AD subtypes. We fit this data using the Subtype and Stage In-80 
ference (SuStaIn) model, a paradigm-shifting algorithm that combines disease progression modeling with 81 
traditional clustering to achieve probabilistic spatiotemporal partitioning and classification23. SuStaIn re-82 
quires only cross-sectional datasets to automatically detect multiple spatiotemporal trajectories, and it 83 
provides probabilistic and quantitative information for individualized inference. We apply SuStaIn to our 84 
multi-cohort sample of tau-PET data to discover systematic spatiotemporal variation in tau spreading. We 85 
validate the subtypes across different PET radiotracers, and we validate the progression patterns using 86 
serial longitudinal tau-PET data. 87 
 88 
Results 89 
We compiled an initial sample of 1667 individuals with flortaucipir-PET tau images, spanning five separate 90 
cohorts. 1143 individuals were identified as either cognitively normal (n=707), or showed biomarker evi-91 
dence for Aβ pathology (Aβ+ MCI, n=223; Aβ+ AD dementia, n=213), and were used as a discovery sample 92 
for subsequent analysis. Demographic information and cross-cohort comparisons can be found in Table 93 
S1.  94 
 95 
Spatiotemporal subtypes of Alzheimer’s disease. We applied the SuStaIn algorithm (Extended Data Fig. 96 
S1a) to the 1143 flortaucipir-PET images in order to extract distinct spatiotemporal trajectories of tau 97 
spreading. As expected, many individuals (n=700; 61%) did not demonstrate any abnormal tau-PET signal, 98 
and were therefore automatically assigned to a tau-negative group (S0) (see Supplementary Note 1). Us-99 
ing cross-validation, we determined a four-subtype solution to best represent the remaining data (n=443; 100 



 

 

See Methods, Extended Data Fig. S1c-f). The four-subtype model was applied to probabilistically assign 101 
individuals to one of 30 progressive stages along one of the four subtype trajectories (Fig 1).  102 

The distribution of clinical diagnoses across stages and subtypes can be found in Extended Data 103 
Fig. S2f,g,i. 145 (32.7%) individuals exhibited a limbic-predominant phenotype, with a Braak-like spatial 104 
progression across SuStaIn stages (S1: Limbic). An additional 79 individuals (17.8%) expressed a parietal-105 
dominant and MTL-sparing phenotype, where early precuneus binding accumulated across temporoparie-106 
tal and frontal cortex, but with relative sparing of the MTL (S2: MTL-Sparing). The third subtype composed 107 
135 (30.5%) individuals with a predominant posterior occipitotemporal phenotype, involving early occipi-108 
tal lobe binding and gradual anterior progression across SuStaIn stage (S3: Posterior). The remaining 84 109 
(19.0%) individuals showed a temporoparietal phenotype with distinct left-sided lateralization, character-110 
ized by early left-temporal tau eventually spreading to parietal and frontal cortex across disease stage (S4: 111 
Lateral [L] Temporal). The differences highlight inconsistencies between tau-PET binding and pathological 112 
sequencing of specific brain regions found in previous studies, such as the hippocampus, lingual gyrus and 113 
insula10,11,27, which exhibited different binding patterns across subtypes (Extended Data Fig. S3). 114 

 115 
Stability of AD subtypes. While variation in subtype proportion was observed (and expected) across co-116 
horts, all subtypes were represented across all cohorts (Extended Data Fig. S4). Most individuals fell neatly 117 
into the stereotypical progression of each subtype (Fig 1b), allowing a clean stepwise progression across 118 
tau abnormality events to be observed across each subtype population (Extended Data Fig. S5). 12% of 119 
individuals did not fall cleanly into any subtype due to having either too little or too much pathology, both 120 
of which are uninformative for subtype (Fig 1b, Extended Data Fig. S2d,h). In general, early stage and cog-121 
nitively normal individuals were assigned to subtypes with less confidence, though median subtype prob-122 
ability neared 100% by SuStaIn stage 7 (Extended Data Fig. S2e), and by the MCI clinical stage (Extended 123 
Data Fig. S2h). This provides evidence that the earliest phases of each subtype may overlap, or that they 124 
are difficult to distinguish above measurement error. We further confirmed that the subtypes produced 125 
by SuStaIn were not driven by, or specific to, arbitrary user inputs relating to the anchoring of regional 126 
pseudotimes (Methods, Extended Data Fig. S6). 127 

We next assessed whether the same subtypes could be derived within a separate replication sample 128 
of 469 individuals scanned with the RO948 tau-PET tracer. The replication cohort, BioFINDER II28, is de-129 
scribed in Supplementary Table S1. SuStaIn was run separately on these individuals, constraining the anal-130 
ysis to produce four subtypes. Three of the four replication subtypes greatly resembled those derived in 131 
the discovery sample (Fig 2). The only exception involved the S4: L Temporal subtype, which had a similar 132 
overall tau-PET pattern but involved right-sided rather than left-sided lateralization. Further analysis de-133 
termined that this related to the smaller sample size rather than the differing radiotracer, and further 134 
suggested that the S4: L Temporal subtype has a consistent overall pattern but a high propensity for 135 
marked lateralization (see Supplemental Note 2, Extended Data Fig. S7). 136 
 137 
Subtypes characterized by distinct clinical profiles. Next, we compared demographic, cognitive and genetic 138 
(i.e. APOE4 status) variables between the subtypes and the tau-negative S0 group (Table 1). Individuals 139 
across all four subtypes expressed worse MMSE and worse memory scores compared to S0 individuals. In 140 
addition, all subtypes except S1 (Limbic) had worse global cognitive composite scores, individuals across 141 
all subtypes except S2 (MTL-Sparing) were more likely to be APOE4 carriers, and all subtypes except S4 (L 142 
Temporal) were more likely to be female, compared to S0 individuals. Compared to tau-negative individu-143 
als in S0, S1 and S3 were older, S2 exhibited poorer executive function, S2 and S3 exhibited poorer 144 
visuospatial function, and S4 had worse language scores.  145 

Compared to other subtypes (i.e., other tau-positive individuals), individuals within the S1 (Limbic) 146 
subtype were more likely to be APOE4 carriers, had less overall tau with a more right-sided pattern, and 147 
had better overall cognition, but worse memory relative to their overall cognition. S2 (MTL Sparing) indi-148 
viduals were younger, less likely to carry an APOE4 allele, had more overall tau burden, had a more right-149 
sided tau pattern and had worse relative executive function, compared to other subtypes. S4 (L Temporal) 150 
individuals had more overall tau with a more left-lateralized pattern. These individuals also trended at 151 



 

 

having worse overall cognition, but had better relative memory and worse relative language scores com-152 
pared to other subtypes. Finally, individuals with the S3 (Posterior) subtype did not exhibit any significant 153 
cognitive, demographic or APOE4 differences compared to the other subtypes. These relationships (after 154 
adjustment for demographics, diagnosis, cohort and SuStaIn stage) are described in Table 1 and visualized 155 
in Extended Data Fig. S8. 156 

Each individual was assigned a stage along their respective subtype trajectory. As expected, increas-157 
ing SuStaIn stage was associated with worse global cognition as measured with MMSE (r=0.54, p<0.0001; 158 
Fig 3a). This relationship was consistent across all subtypes (S1: r = -0.51, S2: r = -0.53, S3: r = -0.64, S4: r = 159 
-0.40, all p<0.001). A strong negative relationship between SuStaIn stage and age was also observed, such 160 
that individuals at later SuStaIn stages tended to be younger (r = -0.59, p<0.0001). This relationship was 161 
again consistent across all subtypes, though less prominent for S1 (S1: r = 0.20, S2: r = -0.68, S3: r = -0.64, 162 
S4: r = -0.73, all p<0.05; Fig 3b). This inverse relationship was also present among individuals both 65 and 163 
younger (n = 100, r = -0.43, p <0.0001) and individuals older than 65 (n = 342, r = -0.28, p < 0.0001), sug-164 
gesting the effect is not driven purely by early onset cases. Lateralization also increased with increasing 165 
SuStaIn stage (Extended Data Fig. S9). However, despite trends in lateralization at higher SuStaIn stage, 166 
many individuals were observed with a “reversed” lateralization compared to the group average tau lat-167 
eralization patterns for their subtype (Extended Data Fig. S9), suggesting lateralization to be at least par-168 
tially orthogonal with subtype. 169 
 170 
Cognitive prognosis of AD subtypes. Longitudinal MMSE data was available for a subset of 697 individuals 171 
(mean follow-up = 1.74 years from PET scan, sd = 0.64). Individuals with the S3 (Posterior) subtype had 172 
significantly slower decline compared to all other subtypes independently (S1: t=2.03, p=0.043; S2: t=2.88, 173 
p=0.004; S4: t=4.83, p<0.0001), as well as in a one vs all analysis (t=3.64,p=0.0003; Fig 3c). This finding 174 
persisted across different clinical diagnoses (Fig 3d, Supplemental Table S2), and was confirmed through a 175 
meta-analysis across the five cohorts, which also showed a significantly slower decline for the S3 (Posteri-176 
or) group (t=1.67,p=0.047; Fig 3e). Individuals with the S4 (L Temporal) subtype additionally showed 177 
steeper cognitive decline compared to S1 (Limbic) subtype individuals (t=3.40, p=0.0008), and generally 178 
showed faster decline compared to other subtypes in a one vs all analysis (t=-4.49,p<0.0001) and across 179 
clinical diagnoses (Fig 3d, Supplementary Table S2). A meta-analysis once again confirmed a significant 180 
overall effect (t=1.88,p=0.031; Fig 3e). 181 
 182 
Stability and progression of AD subtypes over time. SuStaIn uses cross-sectional data to infer longitudinal 183 
trajectories for the tau data, so evaluating how well longitudinal data fits the model is a key aspect of val-184 
idation. 519 individuals from the discovery sample also had follow-up flortaucipir-PET scans (mean follow-185 
up time = 1.42, sd = 0.58, years). Overall, 88.5% of individuals exhibited the same subtype at both baseline 186 
and follow-up, or progressed from S0 into a subtype (Fig 3f). Stability when excluding individuals classified 187 
as S0 at baseline (tau-positive stability) and follow-up was 83.9%. Stable individuals were classified with a 188 
higher degree of confidence at baseline compared to individuals whose subtype changed at follow-up 189 
(stable mean = 0.91, sd = 0.17; change mean = 0.74, sd = 0.27; t = 5.26, p < 0.0001; Fig 3g). Supplementary 190 
Table S3 shows longitudinal tau-positive stability (i.e. excluding S0) when excluding individuals using vari-191 
ous subtype probability thresholds.  192 

We next examined how SuStaIn stage changed over time for each subtype. Across the whole sample, 193 
we observed significant yearly increase in SuStaIn stage (mean ∆/year = 0.8, t[148]=6.54, p<0.0001) (Fig 194 
3h, Table S4), and a significant difference in mean annual rate of SuStaIn stage change was seen across 195 
subtypes (details in Supplementary Note 3). The annual SuStaIn stage increased faster in S4 (L Temporal) 196 
compared to S2 (MTL-Sparing) and S3 (Posterior) subtypes (Fig 3h, Supplementary Note 3). Younger age 197 
(r=-0.22, p=0.006), but not higher baseline SuStaIn stage (r = 0.12, p=0.15), was associated with faster 198 
annual change in stage. As a final validation, we used SuStaIn to forecast longitudinal rate of regional tau-199 
PET change at the individual level. On average, predictions were significantly better than chance for all 200 
subtypes (S1 (Limbic): t[78]=5.00, p<0.0001; S2 (MTL-Sparing): t[52]=2.16, p=0.035; S3 (Posterior): 201 
t[45]=3.05, p=0.0039; S4 (L Temporal): t[29]=4.93, p<0.0001; Fig 3i). 202 



 

 

 203 
Subtype patterns resemble distinct cortico-limbic networks. Based on our previous work29, we used net-204 
work diffusion models to examine the possibility that the observed subtype-specific tau spreading pat-205 
terns may be driven by spread through distinct networks. We found that an entorhinal cortex epicenter 206 
was optimal for the S1 (Limbic) subtype tau pattern and strongly replicated the pattern of tau spreading 207 
(r2=0.70), but did not reproduce other subtype patterns nearly as well (S2: r2=0.04; S3: r2=0.41; S4: 208 
r2=0.37). Models using different epicenters substantially improved fit for these others subtypes (Fig 209 
4a,b,e): best fitting models used the middle temporal gyrus (r2=0.27) for S2 (MTL-Sparing), the fusiform 210 
gyrus (r2=0.59) for S3 (Posterior) and the inferior temporal gyrus (r2=0.50) for S4 (L Temporal) (Fig 4c), 211 
suggesting a possible predominance of these regions in secondary tau seeding for different subtypes. 212 
Highly similar results were found using a different brain atlas and different connectivity data (Extended 213 
Data Fig. S10). We further tracked how the best-fitting epicenter changed at higher disease stages, per-214 
haps reflecting participation of different regions as secondary seeding points with advancing disease pro-215 
gression (Fig 4d). All but the S2 (MTL-Sparing)_subtype exhibited MTL spreading in earlier stages, whereas 216 
early stages of S2 involved parietal spread. Later stages involved secondary seeding in the temporal lobes, 217 
as well as subtype-specific regions. Together, these results suggest that distinct tau patterns across differ-218 
ent subtypes may be driven in part by vulnerability of, or selective spread through, distinct temporal lobe 219 
networks. 220 
 221 
Discussion 222 
For the last thirty years, the progression of tau pathology in AD has principally been described by a single 223 
model of spatiotemporal evolution8,9, despite frequent examples of nonconforming cases12. We show that 224 
the cortical cascade of tau pathology is better described by a data-driven model including multiple spatio-225 
temporal patterns (Fig. 5). Importantly, our findings may reconcile atypical AD variants with common vari-226 
ations of typical AD into a single unified model of pathological progression. First, the model reaffirms the 227 
existence of observed cortical-predominant and limbic-predominant pathological patterns as distinct sub-228 
types of tau progression, rather than phases along a continuum. In addition, the model also accounts for 229 
the most frequently occurring atypical clinical variants of AD, PCA and lvPPA, as the extremes of regularly 230 
occurring posterior and lateral-temporal AD subtypes. Together, our data align with a recent model14 to 231 
suggest variation in the pathological expression of AD along two orthogonal axes: subtype and severity, 232 
the latter of which is strongly and inversely correlated with age (Fig 5). Given that no dominant pattern 233 
emerged, our data suggest the existence of multiple common AD subtypes, challenging the notion that 234 
there is such a pathological entity that can be described as "typical" AD. Rather, the spatial pattern of tau 235 
spreading appears to vary along at least four archetypes, depending on factors such as age and genotype. 236 
Therefore, we propose heterogeneity in AD is best represented as a quadrilateral axis (Fig 5). 237 

Our results are robust across datasets and radiotracers. We found individuals representing each 238 
of four subtype patterns in each of the five contributing cohorts, and we reproduced a very similar set of 239 
subtypes in a totally separate sample using a different radiotracer. Further, most individuals were confi-240 
dently assigned into one subtype pattern, which was consistent over time. The limbic subtype was the 241 
most frequent, and presented with many characteristics typically associated with AD, including a greater 242 
proportion of APOE4 carriers, a strongly amnestic phenotype, and medial temporal pathology with a 243 
Braak-like progression of tau spread. However, this subtype represented only a third of all tau-positive 244 
cases in our dataset (though the earliest stages of three of the four subtypes featured prominent MTL 245 
binding, Fig 4d). Our data suggest instead that, at older onset ages or earlier disease stages, the subtypes 246 
may present with subtle differences that may be difficult to detect in the clinic, while at younger onset 247 
ages or later stages, the more aggressive phenotype can amplify the distinct subtype expressions. The 248 
existence of these phenotypes, if further validated, may necessitate a reform in pathological tau staging, 249 
where key regions are surveyed to increase sensitivity to detect subtype-specific patterns.  250 

Many pioneering studies have noted variation in AD pathology. For example, limbic-predominant 251 
and MTL-sparing phenotypes are contrasted against "typical" phenotypes that express tau pathology in 252 



 

 

both the MTL and neocortex12,13. In contrast to this notion, we found a subtype of individuals expressing 253 
both cortical and MTL tau exhibiting a more aggressive phenotype with marked lateralization, the latter 254 
being a feature that has not been well characterized in histopathological studies of AD, which typically 255 
assess only one hemisphere. In addition, our model allows the concurrence of MTL and cortical pathology 256 
at later stages of several distinct progressions, perhaps suggesting that solely contrasting cortical and MTL 257 
tau (e.g. 21,22) may not be sufficient to describe AD heterogeneity. Indeed, while some spatial convergence 258 
could be observed in our AD subtypes, particularly at early or late stages, subtle regional variation con-259 
sistently distinguishes individuals of one subtype from another. 260 

We reproduce previous reports describing a strong negative correlation between age and tau pro-261 
gression30–34, as well as previous reports that a younger age of onset of AD is associated with a more rapid 262 
progression of tau pathology35,36. Interestingly, in our study, this phenomenon was observable across all 263 
subtypes (Fig 3b). Previous work has noted that early-onset AD (EOAD) is more likely to present with an 264 
atypical (i.e. nonamnestic) phenotype37. This may be a specific characteristic of EOAD. However, ours and 265 
others studies26,38,39 suggest that posterior or left-lateralized temporal binding are not uncommon across 266 
the age spectrum, but our data suggest that the phenotype is more pronounced at earlier ages. There-267 
fore, atypical variants of AD may represent an accelerated and intensified manifestation of common AD 268 
subtypes, though this will require further validation. 269 

Our findings complement other supervised and unsupervised AD subtyping studies from the imaging 270 
and pathology literature12–14,21,22,26,38, though our analysis also produced some novel findings worth fur-271 
ther investigation. Despite the extreme of the posterior subtype being represented by PCA, an aggressive 272 
disease variant, the posterior subtype overall demonstrated slower cognitive decline compared to all oth-273 
er subtypes. These individuals exhibited considerable tau pathology in posterior (including occipital) brain 274 
regions, but also relatively less MTL and frontal binding. These findings, however, are in agreement with 275 
pathology literature describing common variation in occipital tau pathology in both preclinical and symp-276 
tomatic AD 2,40–42. These studies, variously surveying Brodmann areas 17, 18 and 19, find evidence for oc-277 
cipital lobe tau in 24-52% of sampled brains, including in cognitively normal individuals. Our study sug-278 
gests this population variation may indeed be systematic, and could be associated with a specific progres-279 
sion pattern. However, tau in the occipital lobe remains understudied, and future studies will be neces-280 
sary to validate the precise characteristics of this posterior subtype. It is still unclear if the posterior sub-281 
type is related to PCA beyond a shared predominance of posterior tau, though it may at least signify the 282 
existence of a posterior cortical network selectively vulnerable to tau pathology.  283 

Different manifestations of AD may represent subtle variations in the spread of pathology, or could 284 
signal the influence of highly distinct processes relevant to treatment intervention. For example, a recent 285 
pathology study found increased NFT pathology and neuronal loss in the cholinergic basal forebrain spe-286 
cifically in patients with a MTL-sparing phenotype, and that earlier disease onset was associated with 287 
more NFT pathology in these subjects43. Furthermore, another recent study indicated that a targeted ba-288 
sal forebrain treatment could be most effective for patients with a MTL-sparing phenotype44. This re-289 
search may suggest a unique role of the basal forebrain in certain subtypes of AD. Meanwhile, APOE has 290 
been consistently associated with limbic manifestations of AD12,34, including the present study, and APOE 291 
or hippocampus-focused therapies could prove more effective for these individuals. Together, these re-292 
sults point to the possibility that clinical trials may benefit from stratification or enrichment based on AD 293 
subtype, or as a first step, post-hoc identification of within-subtype effects. 294 

There are currently very few explanations as to why subtypes of AD manifest. Fascinating work has 295 
found PCA and lvPPA patients are more likely to exhibit learning disabilities in childhood45,46, perhaps me-296 
diated by abnormalities during brain development47. While lvPPA and PCA may represent extremes along 297 
the AD continua (as indicated by the present results), this points to the possibility that distinct subtypes 298 
may be influenced by variation in cognitive development or other premorbid factors. Another possible 299 
explanation for subtypes is interactions between post-translational tau modification and synaptic tau 300 
spreading. Several studies have shown that the regional pattern of pathological tau expression in mice is 301 
dependent on conformation and injection site of tau seeds35,48,49. It is therefore possible that subtypes of 302 
tau spread may simply be dictated by distinct tau conformations and/or systematic variation in the human 303 



 

 

connectome, perhaps at key synaptic junctures. Supporting the latter hypothesis, we found the tau-PET 304 
pattern of AD subtypes resembled macroscale neuronal networks seeded from different brain regions. 305 
These findings do not presuppose tau pathology necessarily starts in different regions, but instead that 306 
different regions may play a more prominent role in tau propagation across subtypes as "amplifying 307 
nodes". This could be mediated by involvement of distinct neuronal cell subtypes50, which may incur dis-308 
rupted development due to environmental or genetic factors, leading to network abnormality during life 309 
and network vulnerability in late life. 310 

This study has a number of limitations. The SuStaIn method fits data based on the assumption that 311 
several discrete sequences are represented within the data, and it uses cross-sectional information to 312 
create pseudo-longitudinal sequences. This framework is based off of the same logic as most pathological 313 
staging schema (e.g. 8) and hypotheses of biomarker trajectories (e.g. 5), but does so in an automated 314 
fashion. It is therefore possible that a SuStaIn subtype trajectory could be created by "appending" or 315 
"stitching" unrelated disease states together. However, we did find most individuals to remain the same 316 
subtype at longitudinal follow up, and we could predict regional individual tau accumulation greater than 317 
chance using just the SuStaIn model. While the use of tau-PET imaging is a great improvement over using 318 
MRI to measure AD pathology, there is still some discrepancy between tau-PET signal and true tau pa-319 
thology51. While flortaucipir binds to paired-helical filament tau, off-target binding is an issue with flor-320 
taucipir, particularly in the striatum, white matter and choroid plexus52. We mitigated this issue by regres-321 
sion of choroid plexus signal, exclusion of subcortical ROIs and non-AD dementia patients, and region-322 
specific normalization against non-specific binding, as well as replication with RO948 which exhibits less 323 
off-target binding53. Similarly, recent reports question whether elevated flortaucipir binding is detectable 324 
before advanced stages of tau accumulation54–56. However, SuStaIn’s modeling is based on relative re-325 
gional differences in pathology, and regional variation in tau-PET and tau pathology are correlated55–57. 326 
Still, while the unbiased spatial sampling of tau-PET data across the brain aided our discovery of these 327 
subtype patterns, they must still be validated using histopathology studies. Sample size was an obvious 328 
strength of our study, but it comes with the caveat of mixing data from multiple cohorts, scanners, and 329 
cognitive batteries. We addressed this issue somewhat by examining subtypes in each cohort separately, 330 
replicating our results in a separate sample and adjusting for cohort in our comparisons. In addition, de-331 
spite our study boasting the largest tau-PET sample to date, even larger samples would be preferable in 332 
order to elucidate the spatiotemporal progression of each subtype in more detail. We arrived at a four-333 
subtype solution to describe our data using established statistical methodology to identify a solution the 334 
data supports with confidence. However, this does not preclude the possibility that other, more subtly 335 
disctinct subtypes exist (Extended Data Fig. S1f).  336 

In conclusion, we describe four distinct but stable spatiotemporal phenotypes of tau accumulation 337 
in AD. These subtypes exhibit differing clinical profiles and longitudinal outcomes, and their tau patterns 338 
resemble distinct temporal lobe networks. Our data-driven results call into question whether "typical AD" 339 
is a quantifiable entity, rather suggesting that several AD subtypes exist, and that their individual differ-340 
ences are exacerbated by more aggressive phenotypes with younger onset ages. Future studies should 341 
seek to validate the existence and temporal evolution of these subtypes, as well as identify genetic, cellu-342 
lar and developmental factors that may influence their expression. This may include identifying differ-343 
ences in brain activity and connectivity between individuals, as well as differences in regional vulnerabil-344 
ity. This framework may also be useful for enrichment of clinical trials, for providing more individualized 345 
clinical care, and eventually for more individualized treatment. 346 
 347 
 348 
Acknowledgements 349 
The authors would like to acknowledge Drs. Mallar Chakravarty, Bratislav Misic, Pierre Bellec, Pedro Rosa-Neto, 350 
Alain Dagher, Edith Hamel and William Seeley for feedback during the composition of this manuscript. JWV 351 
acknowledges support from the government of Canada through a tri-council Vanier Canada Graduate Doctoral 352 
fellowship, from the McGill Centre for Integrative Neuroscience and the Healthy Brains, Healthy Lives initiative, 353 



 

 

and by the NIH (T32MH019112). ALY is supported by an MRC Skills Development Fellowship. NPO is a UKRI Future 354 
Leaders Fellow (MR/S03546X/1). NPO and DCA acknowledge support from the UK National Institute for Health 355 
Research University College London Hospitals Biomedical Research Centre, and DCA acknowledges support from 356 
EPSRC grant EP/M020533/1. MJG is supported by the "Miguel Servet" program [CP19/00031] and a research grant 357 
[PI20/00613] of the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (ISCIII-FEDER). Author RL 358 
acknowledges support from the NIH (K99AG065501). This project has received funding from the European Union’s 359 
Horizon 2020 research and innovation programme under grant agreement No. 666992. The BioFINDER studies are 360 
supported by the Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), 361 
the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisci-362 
plinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the 363 
Swedish Brain Foundation (FO2019-0326), The Parkinson foundation of Sweden (1280/20), the Skåne University 364 
Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government 365 
under the ALF agreement (2018-Projekt0279). The Tau PET study in Gangnam Severance Hospital was supported 366 
by a grant from Basic Science Research Program through the National Research Foundation of Korea (NRF) funded 367 
by the Ministry of Education (NRF2018R1D1A1B07049386 & NRF2020R1F1A1076154) and a grant of the Korea 368 
Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the 369 
Ministry of Health & Welfare, Republic of Korea (Grant number: HI18C1159). We would additionally like to thank 370 
Bruce Miller, Howie Rosen, Marilu Gorno Tempini and Bill Jagust for supporting the UCSF tau-PET studies, which 371 
were funded through the following sources: NIA R01 AG045611 (Rabinovici), P50 AG23501 (Miller, Rosen, Rabino-372 
vici), P01 AG019724 (Miller, Rosen, Rabinovici). The precursor of 18F-flortaucipir was provided by AVID radiophar-373 
maceuticals. The precursor of 18F-flutemetamol was sponsored by GE Healthcare. The precursor of 18F-RO948 374 
was provided by Roche. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neu-375 
roimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of De-376 
fense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Insti-377 
tute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, 378 
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-379 
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; Euro-380 
Immun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 381 
Ltd.;Janssen Alzheimer Immunotherapy Research Development, LLC.; Johnson Johnson Pharmaceutical Research 382 
Development LLC.; Lumosity; Lundbeck; Merck Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; Neuro-383 
track Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharma-384 
ceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to 385 
support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National 386 
Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and 387 
Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of 388 
Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern 389 
California. Finally, we would like to all participants of this study, and families and care-givers of included patients, 390 
for their support in volunteering data for this study. 391 
 392 
Author Contributions 393 
JWV, OH & ACE conceptualized the work. JWV, ALY, NPO, LMA, MJP & OH contributed to analytic design. 394 
MJP, MDD, GDR, CHL & OH acquired and provided the data. RS, RO, OTS & RLJ contributed to data cura-395 
tion and processing. JWV analyzed the data. ALY & DCA originally created the SuStaIn algorithm, and NPO 396 
& LMA contributed to its execution. YIM created the ESM algorithm. JWV & OH drafted the manuscript. 397 
All authors interpreted the data and substantively contributed to revising the manuscript.  398 
 399 
Competing interests 400 
MJP and MDD are employees of Avid Radiopharmaceuticals, a wholly owned subsidiary of Eli Lilly and 401 
Company and are minor stockholders in Eli Lilly. OH has acquired research support (for the institution) 402 



 

 

from AVID Radiopharmaceuticals, Biogen, Eli Lilly, Eisai, GE Healthcare, Pfizer, and Roche. In the past 2 403 
years, he has received consultancy/speaker fees from AC Immune, Alzpath, Biogen, Cerveau and Roche. 404 
The remaining authors declare no competing interests. 405 
 406 
 407 
Data Availability statement 408 
Tau-PET data contributing to this study was sourced from six different cohorts. One of them, ADNI, is a 409 
public access dataset and can be obtained through an application at http://adni.loni.usc.edu/. Data from 410 
the other datasets are not publicly available for download, but access requests can be made to the re-411 
spective study Investigators: BioFINDER 1,2 – Oskar Hansson; UCSF Memory and Aging Center – Gil D 412 
Rabinovici; Gangnam Severence Hospital, Seoul – Chul Hyoung Lyoo; AVID Radiopharmaceuticals – Mi-413 
chael J Pontecorvo, Michael D Devous. Additionally, CMU60 DTI data used to create template DTI connec-414 
tomes are publicly available, and can be accessed at 415 
https://www.cmu.edu/dietrich/psychology/cognitiveaxon/data.html. 416 
 417 
Code Availability statement 418 
Python and MatLab implementations of the SuStaIn algorithm are available on the UCL-POND github 419 
page: https://github.com/ucl-pond. The ESM algorithm is available for academics as part of an open-420 
access, user-friendly software (for further details, visit https://www.neuropm-lab.com/).  421 
 422 
References 423 
 424 
1. Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J. & Langa, K. M. Monetary Costs of Dementia in the 425 

United States. N. Engl. J. Med. 368, 1326–1334 (2013). 426 
2. Alafuzoff, I. et al. Staging of Neurofibrillary Pathology in Alzheimer’s Disease: A Study of the BrainNet Eu-427 

rope Consortium. Brain Pathol. 0, 080509082911413-??? (2008). 428 
3. Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic 429 

assessment of Alzheimer’s disease. Alzheimer’s Dement. 8, 1–13 (2012). 430 

4. Hardy, J. & Selkoe, D. J. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the 431 
Road to Therapeutics. Science (80-. ). 297, 353–356 (2002). 432 

5. Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical 433 
model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013). 434 

6. La Joie, R. et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and 435 
topography of baseline tau-PET. Sci. Transl. Med. 12, 1–13 (2020). 436 

7. Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer ’ s 437 
disease. 1–15 (2017) doi:10.1093/brain/awx243. 438 

8. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–439 
59 (1991). 440 

9. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Tredici, K. Staging of Alzheimer disease-associated 441 
neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–442 
404 (2006). 443 

10. Schöll, M. et al. PET Imaging of Tau Deposition in the Aging Human Brain. Neuron (2016) 444 
doi:10.1016/j.neuron.2016.01.028. 445 

11. Schwarz, A. J. et al. Regional profiles of the candidate tau PET ligand 18 F-AV-1451 recapitulate key features 446 
of Braak histopathological stages. Brain aww023 (2016) doi:10.1093/brain/aww023. 447 

12. Murray, M. E. et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical char-448 
acteristics: A retrospective study. Lancet Neurol. 10, 785–796 (2011). 449 

13. Whitwell, J. L. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: A 450 



 

 

case-control study. Lancet Neurol. 11, 868–877 (2012). 451 
14. Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer’s disease: a systematic review 452 

and meta-analysis. Neurology 0, under-review (2020). 453 
15. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s dis-454 

ease. Brain 139, 1551–1567 (2016). 455 
16. Crutch, S. J. et al. Consensus classification of posterior cortical atrophy. Alzheimer’s Dement. 13, 870–884 456 

(2017). 457 
17. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 458 

1006–1014 (2011). 459 
18. Ossenkoppele, R. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: Clinical, neuroimaging 460 

and pathological features. Brain 138, 2732–2749 (2015). 461 
19. Drummond, E. et al. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alz-462 

heimer’s disease. Acta Neuropathol. 133, 933–954 (2017). 463 

20. Crist, A. M. et al. Leveraging selective hippocampal vulnerability among Alzheimer’s disease subtypes re-464 
veals a novel tau binding partner SERPINA5. bioRxiv 2020.12.18.423469 (2020) 465 
doi:10.1101/2020.12.18.423469. 466 

21. Risacher, S. L. et al. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of 467 
decline. Neurology 89, 2176–2186 (2017). 468 

22. Ossenkoppele, R. et al. Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer’s disease. 469 

Alzheimer’s Dement. 16, 335–344 (2020). 470 
23. Young, A. L. et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases 471 

with Subtype and Stage Inference. Nat. Commun. 9, 4273 (2018). 472 
24. Dong, A. et al. Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cogni-473 

tion, progression and biomarkers. Brain 140, 735–747 (2017). 474 
25. Noh, Y. et al. Anatomical heterogeneity of Alzheimer disease: based on cortical thickness on MRIs. Neurol-475 

ogy 83, 1936–44 (2014). 476 
26. Tam, A. et al. A highly predictive signature of cognition and brain atrophy for progression to Alzheimer’s 477 

dementia. Gigascience 8, 1–16 (2019). 478 
27. Vogel, J. W. et al. Data-driven approaches for tau-PET imaging biomarkers in Alzheimer’s disease. Hum. 479 

Brain Mapp. 40, 638–651 (2019). 480 
28. Leuzy, A. et al. Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differenti-481 

ation of Alzheimer Disease from Other Neurodegenerative Disorders. JAMA Neurol. 1–12 (2020) 482 
doi:10.1001/jamaneurol.2020.0989. 483 

29. Vogel, J. W. et al. Spread of pathological tau proteins through communicating neurons in human Alz-484 
heimer’s disease. Nat. Commun. 11, 2612 (2020). 485 

30. Marshall, G. A., Fairbanks, L. A., Tekin, S., Vinters, H. V. & Cummings, J. L. Early-onset Alzheimer’s disease is 486 
associated with greater pathologic burden. J. Geriatr. Psychiatry Neurol. 20, 29–33 (2007). 487 

31. Whitwell, J. L. et al. The role of age on tau PET uptake and gray matter atrophy in atypical Alzheimer’s dis-488 

ease. Alzheimer’s Dement. 15, 675–685 (2019). 489 
32. Pontecorvo, M. J. et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cogni-490 

tive impairment and Alzheimer’s disease dementia. Brain 142, 1723–1735 (2019). 491 
33. Jack, C. R. et al. Predicting future rates of tau accumulation on PET. Brain 143, 3136–3150 (2020). 492 
34. La Joie, R. et al. Association of APOE4 and clinical variability in Alzheimer disease with the pattern of tau- 493 

and amyloid-PET. Neurology 10.1212/WNL.0000000000011270 (2020) 494 
doi:10.1212/wnl.0000000000011270. 495 



 

 

35. Dujardin, S. et al. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat. 496 
Med. (2020) doi:10.1038/s41591-020-0938-9. 497 

36. Aoyagi, A. et al. Aβ and tau prion-like activities decline with longevity in the Alzheimer’s disease human 498 
brain. Sci. Transl. Med. 11, 1–14 (2019). 499 

37. Koedam, E. L. G. E. et al. Early-Versus Late-Onset Alzheimer’s Disease: More than Age Alone. J. Alzheimer’s 500 
Dis. 19, 1401–1408 (2010). 501 

38. Sun, N., Mormino, E. C., Chen, J., Sabuncu, M. R. & Yeo, B. T. T. Multi-modal latent factor exploration of 502 
atrophy, cognitive and tau heterogeneity in Alzheimer’s disease. Neuroimage 201, (2019). 503 

39. Franzmeier, N. et al. Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer’s 504 
disease. Sci. Adv. 6, eabd1327 (2020). 505 

40. Mukaetova-Ladinska, E. B. et al. Regional Distribution of Paired Helical Filaments and Normal Tau Proteins 506 
in Aging and in Alzheimer’s Disease with and without Occipital Lobe Involvement. Dement. Geriatr. Cogn. 507 
Disord. 3, 61–69 (1992). 508 

41. McKee, A. C. et al. Visual Association Pathology in Preclinical Alzheimer Disease. J. Neuropathol. Exp. 509 
Neurol. 65, 621–630 (2006). 510 

42. Pikkarainen, M., Kauppinen, T. & Alafuzoff, I. Hyperphosphorylated Tau in the Occipital Cortex in Aged 511 
Nondemented Subjects. J. Neuropathol. Exp. Neurol. 68, 653–660 (2009). 512 

43. Hanna Al-Shaikh, F. S. et al. Selective Vulnerability of the Nucleus Basalis of Meynert among Neuropatho-513 
logic Subtypes of Alzheimer Disease. JAMA Neurol. 32224, 225–233 (2019). 514 

44. Machado, A. et al. The cholinergic system in subtypes of Alzheimer’s disease: an in vivo longitudinal MRI 515 
study. Alzheimers. Res. Ther. 12, 51 (2020). 516 

45. Rogalski, E., Johnson, N., Weintraub, S. & Mesulam, M. Increased Frequency of Learning Disability in Pa-517 
tients With Primary Progressive Aphasia and Their First-Degree Relatives. Arch. Neurol. 65, 1–7 (2008). 518 

46. Ossenkoppele, R. et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alz-519 
heimer disease vs other neurodegenerative disorders. JAMA - J. Am. Med. Assoc. 320, 1151–1162 (2018). 520 

47. Miller, Z. A. et al. Cortical developmental abnormalities in logopenic variant primary progressive aphasia 521 
with dyslexia. Brain Commun. 1–8 (2019) doi:10.1093/braincomms/fcz027. 522 

48. Hyman, B. T. Tau propagation, different tau phenotypes, and prion-like properties of tau. Neuron 82, 1189–523 
1190 (2014). 524 

49. He, Z. et al. Transmission of tauopathy strains is independent of their isoform composition. Nat. Commun. 525 
11, (2020). 526 

50. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s Disease. (2020). 527 
51. Lemoine, L., Leuzy, A., Chiotis, K., Rodriguez-Vieitez, E. & Nordberg, A. Tau positron emission tomography 528 

imaging in tauopathies: The added hurdle of off-target binding. Alzheimer’s Dement. Diagnosis, Assess. Dis. 529 
Monit. 10, 232–236 (2018). 530 

52. Baker, S. L., Harrison, T. M., Maaß, A., La Joie, R. & Jagust, W.  Effect of off-target binding on 18 F-531 
Flortaucipir variability in healthy controls across the lifespan . J. Nucl. Med. jnumed.118.224113 (2019) 532 
doi:10.2967/jnumed.118.224113. 533 

53. Smith, R. et al. Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir 534 
and [18F]RO948. Eur. J. Nucl. Med. Mol. Imaging 47, 342–354 (2020). 535 

54. Fleisher, A. S. et al. Positron Emission Tomography Imaging with [18F]flortaucipir and Postmortem Assess-536 
ment of Alzheimer Disease Neuropathologic Changes. JAMA Neurol. 77, 829–839 (2020). 537 

55. Lowe, V. J. et al. Tau-positron emission tomography correlates with neuropathology findings. Alzheimer’s 538 
Dement. 16, 561–571 (2020). 539 

56. Soleimani-Meigooni, D. N. et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer’s disease and 540 
other neurodegenerative diseases. Brain 143, (2020). 541 

57. Smith, R., Wibom, M., Pawlik, D., Englund, E. & Hansson, O. Correlation of in Vivo [ 18 F]Flortaucipir with 542 
Postmortem Alzheimer Disease Tau Pathology. JAMA Neurol. 76, 310–317 (2019). 543 



 

 

 544 
 545 
Figure Legends 546 
 547 
Figure 1  548 
Spatiotemporal subtypes of tau progression. A) Tau-PET pattern of tau-positive (subtyped) individuals. B) Quarter-549 
nary plot showing probability each individual is classified as each subtype. Dots are labeled by final subtype classi-550 
fication: S1 (blue), S2 (green), S3 (orange) or S4 (pink). Inset box shows individuals that had a probability < 0.5 to 551 
be classified as any of the four subtypes (i.e. showing poor fit). C) Average tau-PET pattern for each subtype. The 552 
colorbar is the same as Panel A. D) Regions showing significant difference between one subtype and all other sub-553 
types using OLS linear models adjusting for SuStaIn stage, after FDR correction. E) Progression of each subtype 554 
through SuStaIn stages. Each image is a mean of individuals classified at the listed stage and up to four stages low-555 
er. Only the left hemisphere is shown. 556 
 557 
Figure 2 558 
Subtype stability: AD spatiotemporal subtypes replicate in another cohort using a different PET tracer. A) For both 559 
the discovery (Orig) and replication (Repl) cohorts, maps showing regions significantly different between one sub-560 
type and all others (excluding S0) within the cohort (after FDR correction). Similar spatial patterns were observed, 561 
except for a reversed pattern in S4. B) Confusion matrix comparing subtypes identified in the original (discovery) 562 
sample (y-axis), and subtypes separately identified in the replication sample (x-axis). Values represent spatial cor-563 
relation between average regional tau for each subtype. Values along the diagonal indicates similarity between the 564 
same subtype across both cohorts. 565 
 566 
Figure 3 567 
Progression of AD subtypes. Increasing SuStaIn stage is associated with lower age a) and worse cognition b) across 568 
all subtypes. c) Rate of longitudinal decline in MMSE for each subtype. The x-axis was jittered for visualization pur-569 
poses only. The y-axis shows MMSE across all observations as predicted by linear mixed models adjusted for co-570 
variates. d) Boxplots showing the distribution of predicted MMSE slopes for each subtype, stratified by clinical di-571 
agnosis (stats in Supplementary Table S2). e) Cross-cohort meta-analysis for the effects of S4: L Temporal declining 572 
faster (left) and S3: Posterior declining slower (right) than other subtypes, respectively. Diamonds represent effect 573 
sizes, while diamond size reflects relative sample size. Red diamonds indicate significant effects. Error bars = SEM. 574 
f) Confusion matrix showing longitudinal stability of subtypes. Each row shows the number of subjects from a given 575 
subtype at Visit 1 that were classified as each subtype at Visit 2. The diagonal represents the number of subjects 576 
that were classified as the same subtype at Visit 1 and Visit 2. g) Individuals with a higher probability of being clas-577 
sified into their subtype at baseline were more likely to show a stable subtype over time (two-sided 578 
t[156,53]=5.26, p=3.6e-07). h) Annual change in SuStaIn stage for each subtype, in individuals with stable subtypes 579 
over time (stats in Supplementary Note 3). i) SuStaIn was used to predict longitudinal change in regional tau accu-580 
mulation. Each dot represents a subject, and the y-axis represents the spatial correlation between the true region-581 
al tau change and the predicted regional tau change. Average predictions were significantly greater than chance 582 
based on a two-tided, one-sample t-test against 0 (S1: t[78]=5.00,p=3.5e-06; S2: t[52]=2.16,p=0.035; S3: 583 
t[45]=3.05,p=0.0039; S4: t[29]=4.93,p=3.1e-05) . *p(unc.)<0.05, *** p(unc.)<0.001. Error bars in a-c represent 95% 584 
CI of model fit across 1000 bootstrap samples. For boxplots in d, g-i, center line=median, box=inner quartiles, 585 
whiskers=extent of data distribution except *=outliers 586 
 587 
Figure 4 588 
Application of epidemic spreading model to determine subtype-specific corticolimbic circuit vulnerability. An epi-589 
demic spreading model was fit separately for each subtype; once using an entorhinal cortex epicenter (a, blue), 590 
and once with a subtype-specific best-fitting epicenter (b, red). For each plot, each dot represents a region. The x-591 
axis represents the mean simulated tau-positive probabilities across the population, while the y-axis represents the 592 
mean observed tau-positive probability. Each row represents a subtype. Error bars in a-c represent 95% CI of mod-593 
el fit across 1000 bootstrap samples. c) For each subtype, the probability that each region is the best fitting epicen-594 



 

 

ter for that subtype, based on bootstrap resampling. d) For each subtype, the proportion of individuals at various 595 
stages that had best-fitting epicenters within each of five major brain divisions: medial temporal lobe (MTL, blue), 596 
temporal lobe (yellow), parietal lobe (purple), occipital lobe (gray) and frontal lobe (turquoise). e) For each subype, 597 
spatial representation of ESM results from panel B using best-fitting epicenter. From left to right, observed region-598 
al tau-PET probabilities (tau-P), regional connectivity to best-fitting epicenter (Cx), tau-PET probabilities predicted 599 
by the ESM. These images show the degree to which constrained diffusion of signal through a connectome (Pred.), 600 
starting in a given epicenter and its associated fiber network (Cx.), recapitulates the tau patterns of each subtype 601 
(Obs.). 602 
 603 
Figure 5 604 
A theoretical model summarizing variation in the spread of tau pathology in AD. Tau pathology varies along an axis 605 
of severity (vertical in the diagram), which is inversely associated with onset age. In addition, tau varies along a 606 
spatiotempral dimension (horizontal plane in the diagram), such that an individual can be described by their fit 607 
along one of at least four trajectories. Text indicates clinical characteristics of each subtypes. Emboldened text re-608 
flects robust differences between subtypes, while normal text reflects less-robust characteristics that differentiate 609 
subtypes from tau-negative individuals 610 
 611 
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Table 1 623 
 624 

 S0: No Tau S1: Limbic S2: MTL-
Sparing S3: Posterior S4: L Tem-

poral 

 

 

n 687 137 73 131 80 
 

 

Age 71.52 (8.1) 75.28 (7.7)# 71.34 (8.3)* 75.06 (7.3)# 73.41 (6.9) 
 

 

Prop. Female 0.49 0.70# 0.60‡ 0.64# 0.56 
 

 

Education 15.17 (2.9) 14.42 (3.9) 14.29 (4.0) 14.6 (3.0) 14.82 (2.9) 
 

 

Prop. APOE4 0.26 0.75#* 0.47* 0.63# 0.59#  



 

 

Carrier  

Cortical Tau 
SUVR 1.04 (0.1) 1.41 (0.1)#* 1.44 (0.1)# 1.44 (0.1)# 1.47 (0.1)#* 

 

 

Laterality 0.0 (0.2) -0.28 
(1.3)*#R 

-0.13 
(1.6)‡*R 0.04 (1.5) 1.95 (1.2)#*L 

 

 

MMSE 28.9 (1.5) 24.33 (3.0)# 24.32 (4.2)# 24.19 (3.0)# 23.33 (5.0)# 
 

 

Global Cogni-
tion 0.36 (0.5) -0.03 (0.8)* -0.29 (0.8)# -0.23 (0.8)# -0.39 (0.9)#† 

 

 

Abs. Memory 0.48 (0.7) -0.62 (0.7)#† -0.36 (0.7)# -0.55 (0.7)# -0.3 (0.8)#† 
 

 

Abs. Lan-
guage 0.22 (0.7) -0.11 (0.8) 0.01 (0.9) -0.18 (0.8) -0.64 (1.1)#* 

 

 

Abs. Execu-
tive 0.19 (0.6) 0.02 (0.9) -0.33 (0.9)# 0.03 (0.8) -0.17 (1.0)‡ 

 

 

Abs. 
Visuospatial 0.19 (0.6) 0.08 (1.0) -0.25 (1.2)# -0.23 (1.2)# -0.09 (1.0) 

 

 

Rel. Memory 0.26 (0.8) -0.61 (1.0)#* -0.14 (1.0) -0.37 (1.0)# -0.06 (1.1)* 
 

 

Rel. Lan-
guage -0.02 (0.8) 0.05 (1.0) 0.31 (1.2)# 0.06 (1.0) -0.51 (1.3)#* 

 

 

Rel. Execu-
tive -0.14 (0.8) 0.25 (1.0)‡ -0.22 (1.0)‡* 0.38 (1.1)# 0.22 (1.2) 

 

 

Rel. 
Visuospatial -0.1 (0.7) 0.31 (1.1)‡ 0.03 (1.3) 0.0 (1.3) 0.27 (1.3) 

 

 
 625 
 626 
Table 1 Comparison of means of different variables between subtypes in the discovery sample, after correction for age (except in the case of 627 
age), sex (except in the case of sex), education (except in the case of education), cohort, clinical diagnosis (i.e. CN, MCI, AD), and SuStaIn stage 628 



 

 

(except comparisons with S0). Standard deviations are given in parentheses where relevant. All p-values were corrected for multiple compari-629 
sons. 630 
MMSE = Mini-Mental State Examination; Abs. = Absolute; Rel. = Relative; Prop. = Proportion  631 
* = Adj. p$<$0.05 (vs all other subtypes, not including S0)  632 
† = Adj. p$<$0.1 (vs all other subtypes, not including S0) 633 
# = Adj. p$<$0.05 (vs S0) 634 
‡ = Adj. p$<$0.1 (vs S0). 635 
R = Significant right-sided laterality in this subtype compared to others 636 
L = Significant left-sides laterality in this subtype compared to other subtypes. 637 
 638 
 639 
 640 
 641 
 642 
 643 
Online Methods 644 
Unless otherwise noted, all data analysis was conducted, and all figures were created, using Python 645 
v.3.7.3, mostly using the numpy, scipy, pandas, scikit-learn, nilearn, matplotlib, seaborn and statsmodels 646 
libraries.  647 
 648 
Sample Characteristics. The total sample for the following analyses comprised of flortaucipir tau-PET scans 649 
from 1667 individuals from five different cohorts (BioFINDER I, Seoul, AVID, UCSF, ADNI), and RO948 PET 650 
scans from 657 individuals from a sixth cohort (BioFINDER II). Information pertaining to recruitment, diag-651 
nostic criteria and Aβ positivity assessment for the BioFINDER I (BioF)46, ADNI27, AVID32, Seoul59, UCSF6 and 652 
BioFINDER II (BF2)28 cohorts have been previously reported. Informed written consent was provided for all 653 
participants or their designated caregiver, and all protocols were approved by each cohort’s respective 654 
institutional ethical review board. Specifically: All BioFINDER subjects provided written informed consent 655 
to participate in the study according to the Declaration of Helsinki; ethical approval was given by the Eth-656 
ics Committee of Lund University, Lund, Sweden, and all methods were carried out in accordance with the 657 
approved guidelines. Approval for PET imaging was obtained from the Swedish Medicines and Products 658 
Agency and the local Radiation Safety Committee at Skåne University Hospital, Sweden. For UCSF, the 659 
study was approved by the University of California (San Francisco and Berkeley) and Lawrence Berkeley 660 
National Laboratory institutional review boards for human research. Data from the AVID sample were 661 
collected in compliance with the Declaration of Helsinki and the International Conference on Harmoniza-662 
tion guideline on good clinical practice. Data collection for the Gangnam Severance hospital sample was 663 
approved by the institutional review board of Gangnam Severance Hospital. Information related to partic-664 
ipant consent in ADNI can be found at (ADNI; http://adni.loni.usc.edu). Some of the data used in the 665 
preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 666 
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Prin-667 
cipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial mag-668 
netic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 669 
and neuropsychological assessment can be combined to measure the progression of mild cognitive im-670 
pairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. 671 

From this total sample of 1667 subjects with flortaucipir scans, a subsample was derived including i) 672 
all cognitively unimpaired individuals older than 40 years; and ii) individuals who had both a diagnosis of 673 
MCI or AD, and imaging or fluid evidence of brain Aβ pathology. All subjects with a primary diagnosis oth-674 
er than cognitively unimpaired (which included subjective cognitive decline), MCI or AD were excluded. 675 
This subsample, used for all subsequent analysis, comprised 1143 individuals. The same screening proce-676 
dures were used to filter individuals from BioFINDER II, reducing the samples size from 657 to 469. Char-677 
acteristics of all samples, including inter-cohort differences, are detailed in Table S1. 678 
 679 



 

 

Image Acquisition and Preprocessing. Tau-PET data acquisition procedures for each cohort have been pre-680 
viously described6,27,28,32,46,59. All tau-PET data were processed centrally in Lund by analysts blinded to de-681 
mographic and clinical data, in a manner previously described46. Briefly, resampling procedures were used 682 
to harmonize image size and voxel dimension across sites. Each image underwent motion correction using 683 
AFNI’s 3dvolreg (https: //afni.nimh.nih.gov/), and individual PET volumes were averaged within-subject. 684 

Each subject’s mean PET image next underwent rigid coregistration to it’s respective skull-stripped native 685 
T1 image, and images were intensity normalized using an inferior cerebellar gray reference region, result-686 
ing in standardized update value ratio (SUVR) images. T1 images were processed using Freesurfer v6.0 687 
(https://surfer.nmr.mgh.harvard.edu/), resulting in native space parcellations of each subject’s brain using 688 
the Desikan-Killiany (freesurfer) atlas. These parcellations were used to extract mean SUVR values within 689 
different regions of interest (ROIs) for each subject in native space. 690 
 691 
Subtype and Stage Inference. Typical efforts to perform data-driven subtyping of neuroimages in AD are 692 
limited by the confound of disease stage. In a sample spanning the AD spectrum from healthy to dement-693 
ed such as ours, disease progression represents the main source of variation in MR and PET images. 694 
Therefore, unless disease stage is somehow accounted for, most clustering algorithms will partition indi-695 
viduals based on their disease stage. This is not useful for parsing heterogeneous patterns related to pro-696 
gression subtypes, which are theoretically orthogonal to disease progression itself. The Subtype and Stage 697 
Inference (SuStaIn)23 algorithm surmounts this limitation by combining clustering with disease progression 698 
modeling. Detailed formalization of SuStaIn has been published previously23. 699 

SuStaIn models linear transition across discrete points along a progression of indices of severity (typ-700 
ically z-scores), separately across different ROIs (Fig. S1a). Input requires a subject x feature matrix where, 701 
in this case, features represent mean tau-PET signal within different ROIs. In addition, "severity scores", 702 
indicating different waypoints along the natural progression of ROI severity, must be provided. Whereas 703 
the choice of ROI constrains the spatial dimensions along which individuals may vary, the severity scores 704 
instead constrain the temporal dimension of variation. The total number of features is therefore repre-705 
sented by the product of N ROIs by N ROI-specific severity scores. A balance must thus be struck between 706 
resolution in the spatial and temporal dimensions, with respect to overall sample size. 707 

Our discovery sample boasts scans from 1143 individuals, but even given our inclusion criteria, we 708 
expected from previous work29 that the majority of individuals (50-60%) will have minimal tau binding 709 
(note that SuStaIn will automatically detect these individuals and exclude them from progression model-710 
ing). We therefore expect the modeling to be performed on a sample of closer to N~450-550. We there-711 
fore decided on ten different ROIs (spatial features), each with three severity scores (temporal dimen-712 
sion), totalling 30 features. Given an arbitrary rule of 10-20 observations per feature, 300-600 observa-713 
tions should provide sufficient power, and our sample size should therefore be sufficient. 714 

For the ten spatial features, we opted for left and right lobar regions of interest: parietal, frontal, 715 
occipital, temporal and medial temporal lobe (MTL). This choice is justified as follows: i) previous imaging 716 
and pathology subtyping studies have revealed variation in AD pathology to often occur within specific 717 
lobes, e.g. limbic-predominant (MTL), MTL-sparing (parietal), posterior cortical atrophy (occipital), logo-718 
penic aphasia (temporal) and behavioral variant AD (perhaps frontal)18; ii) hemispheric laterality in AD is 719 
understudied, perhaps due to pathological staining often occurring on single hemispheres. However, 720 
some laterality has been observed in AD clinical variants (i.e. lvPPA15) and may point to differing pheno-721 
types in typical AD; iii) These lobar regions maintain some orthogonality to disease progression, as multi-722 
ple lobes are involved in Braak stages IV - VI8. 723 

To define severity score cutoffs, we first sought to normalize SUVR values to account for regional 724 
differences in PET signal (due to nonuniformity of off-target binding, perfusion, etc. across the brain)29. 725 
Two-component Gaussian mixture models were used to define, for each ROI, a normal (Gaussian-shaped 726 
noise) and abnormal distribution. We then created tau Z-scores by normalizing all values using the mean 727 
of the normal distribution (Extended Data Fig. S1b). This procedure centered the Z-score values on the 728 



 

 

normal distribution to allow for more interpretable values (i.e. 2=2 SDs from normal), and also accounted 729 
for region-specific differences in normal and abnormal SUVR distributions. Uniform values of Z = 2, 5, 10 730 
were arbitrarily chosen as severity score control points for all ROIs (Extended Data Fig. S1)B. However, 731 
analyses were also run with alternative z-score values, see the Replication Analysis section below. 732 

The number of subtypes (i.e. distinct spatiotemporal progressions) was determined through cross-733 
validation. Separately for each k=1-7 subtypes, 10-fold cross-validation was performed where, for each 734 
fold, SuStaIn was fit to 90% of the data, and this model was used to evaluate sample likelihood for the 735 
10% left-out subjects. For each left-out set, model fit was evaluated using the cross-validation information 736 
criterion (CVIC; as described in 23), as well as out-of-sample log-likelihood. In addition, we used the inner-737 
fold SuStaIn model to assign all outer-fold individuals to a subtype, and we evaluated the probability of 738 
the maximum-likelihood subtype. In theory, a better fit model should produce more high probability as-739 
signments of left-out data, though more subtypes will also make assignment more challenging. k was cho-740 
sen by evaluating these three metrics in concert (Extended Data Fig. S1c-e). CVIC increased significantly 741 
with increasing k, indicating better fit to the data as the number of subtypes increased, though the curve 742 
flattened somewhat after k=4 (Extended Data Fig. S1c). Similarly, log-likelihood increased indicating better 743 
model fit, up until k=4, after which no improvement was seen (Extended Data Fig. S1d). In contrast to the-744 
se fit statistics, cross-validated maximum-likelihood subtype probability decreased with increasing k, indi-745 
cating less-confident assignment of left-out data with more subtypes. This decline was steady, though the 746 
median probability dropped below 0.5 after k=4. Taken together, k=4 appeared to be the best solution to 747 
maximize model fit but minimize detriment to subtype confidence. We also noted that no subtypes after 748 
k=4 had more than one "parent" subtype. In other words, solutions 3 and 4 feature subtypes that were 749 
composed of multiple parent subtypes, whereas all solutions thereafter featured only subtypes that split 750 
off from a single parent subtype. This could be indicative of a certain level of hierarchical convergence at 751 
k=4 (Extended Data Fig. S1f). 752 

Finally, SuStaIn was run on the whole sample with the selected k=4. Note that for model fitting, SuS-753 
taIn uses a uniform prior on disease subtype and stage (i.e. assumes all subtype and stage combinations 754 
equally likely). Note also that the model is initialized with an expectation-maximization algorithm, and 755 
therefore does not require a burn-in period.23 The model was fit using 10000 Markov chain Monte Carlo 756 
(MCMC) iterations. SuStaIn calculates the probability that each individual falls into each stage of each sub-757 
type, and individuals are assigned to their maximum likelihood subtype and stage. Note that individuals 758 
that do not express abnormal tau in any region are classified by SuStaIn as "Stage 0", and are not assigned 759 
to a subtype. The proportion of individuals classified into each subtype was quantified. We also stratified 760 
this quantification by clinical diagnosis, and to cohort to assess the frequency of subtypes in each contrib-761 
uting dataset. Finally, we quantified the proportion of subjects that did not fall well into any subtype (no 762 
subtype probability >50%). 763 

 764 
Post-hoc subtype correction. Manual inspection of subtype progressions suggested that the early stages of 765 
one subtype (S2: MTL-Sparing; see Results) were composed mostly of cognitively normal individuals with 766 
abnormally high tau-PET binding throughout the cortex, but little-to-no tau in typical early-mid AD re-767 
gions, i.e. false (tau) positives. Specifically, these individuals showed elevated binding throughout the cor-768 
tex, including sensorimotor and frontal regions (regions where tau typically accumulates only in the latest 769 
stages of AD8), but had low tau levels in the temporal lobes (Extended Data Fig. S1a). On an individual 770 
basis, such individuals showed tau-PET signal that was slightly but globally elevated, with several small 771 
"hotspots" distributed diffusely throughout frontal, parietal and occipital cortex. While it is unclear 772 
whether this elevated binding represents off-target binding, diffuse low-level target binding, or other 773 
methodological issues, consensus among co-authors was that these individuals were not consistent with 774 
an AD phenotype. We used Gaussian mixture modeling across all individuals as described in 29 to define 775 
the probability of abnormal tau-positivity in each of the left and right entorhinal cortex and precuneus, 776 
respectively. We then marked individuals who had <90% probability of tau in all four regions as low-777 
probability tau individuals (T-). These individuals also underwent manual inspection. Next, we identified T- 778 
individuals in the MTL-Sparing subtype, finding 40.6% of this subtype was composed of this group, and all 779 



 

 

were classified as stage 5 (of 31) or below. Furthermore these individuals showed many other indications 780 
of being false (tau) positives: they had normal MMSE scores, were older, were less likely to be Aβ+ and 781 
less likely to be MCI or AD (Extended Data Fig. S2b,c). We assume SuStaIn appended this specific group of 782 
T- individuals to the MTL-Sparing subtype because the individuals i) had abnormally high tau in at least 783 
one ROI as per our calculations (even if that abnormal signal was not driven by pathology); ii) the abnor-784 
mal tau was located mainly in the isocortex inclusive of the parietal lobe; iii) these individuals did not have 785 
elevated MTL binding. As SuStaIn is an unsupervised algorithm, the pathological MTL-sparing phenotype 786 
became conflated with this specific profile of T- individuals. To correct this issue, we converted all T- indi-787 
viduals classified as MTL-sparing to Subtype 0 for all further analysis. 788 
 789 
Visualization of subtype-specific tau-PET patterns. To visualize tau-PET patterns for each subtype, we calcu-790 
lated the mean tau Z-score for each Desikan-Killiany (freesurfer) atlas ROI. To visualize the progression of 791 
the subtype pattern across SuStaIn stages, for each subtype, we created mean images for all individuals 792 
falling into the following SuStaIn stage bins: 2-6, 7-11, 12-16, 17-21, 22-26. To deduce regions with rela-793 
tively greater or less tau signal for each subtype, we created region-wise one-vs-all ordinary least squares 794 
(OLS) linear models comparing regional tau in one subtype to all others. This analysis was performed to 795 
visualize subtype models inferred by SuStaIn using individual data, and to explore differences between 796 
subtypes. Each model included ROI tau Z-scores as the dependent variable, a one-hot dummy variable 797 
representing membership in the reference subtype, and SuStaIn stage as a covariate. These models were 798 
FDR-corrected for the number of comparisons (i.e. number of ROIs). 799 
 800 
Subtype Characterization. Several demographic, cognitive and genetic variables were available for nearly 801 
all individuals across the five cohorts in our main (discovery) cohort. These variables included clinical di-802 
agnosis (100%), age (99.8%), sex (100%), years of education (97.1%), mini mental state examination 803 
(MMSE) score (97.7%) and APOE4 allele carriage (89.5%). Only the UCSF sample provided diagnoses of 804 
clinical AD variants such as PCA16 and lvPPA17. In addition, most individuals underwent extensive cohort-805 
specific cognitive batteries assessing multiple domains of cognition. In order to utilize this rich cognitive 806 
data, we created cognitive domain scores separately within each cohort by taking the mean of several z-807 
scored tests within the following cognitive domains: memory, executive function, language and visuospa-808 
tial function. Supplemental Table S5 indicates which cognitive tests were used in each cognitive domain 809 
score across each cohort. We calculated global cognition as the mean between the four domain scores. 810 
Finally, we additionally regressed global cognition out of each domain score to create "relative" cognitive 811 
domain scores. These scores are useful for assessing the degree of domain-specific impairment above and 812 
beyond global impairment. The various absolute and relative domain scores were then aggregated across 813 
all cohorts to maximize the sample size available for cognitive tests: memory (86.6%), language (81.3%), 814 
executive function (85.5%), visuospatial function (82.0%). While aggregating scores of different composi-815 
tions across cohorts of different compositions presents a suboptimal solution, we rest on sample sizes and 816 
statistical correction helping to overcome these limitations. 817 

Subtypes were statistically compared to one another, and to tau-negative (i.e. Stage 0) individuals, 818 
in order to determine subtype-specific characteristics. These analyses compared age, sex, education, AP-819 
OE4 carriage, MMSE, global cognition, total tau, and total tau asymmetry. Comparisons between subtypes 820 
and Stage 0 individuals additionally included the four cognitive domain scores, while comparison between 821 
subtypes instead included the four "relative" cognitive domain scores. This statistical comparison involved 822 
three steps: 1) Comparison to tau-negative individuals: Tau-negative individuals were those characterized 823 
as "Subtype 0" by SuStaIn, i.e. those individuals that did not demonstrate any abnormal tau events. An 824 
OLS linear model was fit with each variable described above as the dependent variable, and with dummy-825 
coded subtype entered as the independent variable (with S0 as the reference subtype). The model also 826 
included age, sex, education, clinical status (CN, MCI, AD) and cohort as covariates (except when that co-827 
variate was the dependent variable). Model t- and p-values were stored for each model and the latter 828 
were FDR-corrected. 2) Comparison between subtypes. A one-vs-all approach was applied to subtyped 829 
individuals only to assess how different tau-progression subtypes differed from one another. Separately 830 



 

 

for each subtype, models were fit for each variable with a single dummy variable entered indicating 831 
membership to that subtype. Models once again covaried for age, sex, education, clinical status (CN, MCI, 832 
AD), cohort, and, this time, SuStaIn stage. T and p values were stored, and the latter was FDR-corrected 833 
for the number of variables assessed. 3) Finally, each subtype was compared directly to each other sub-834 
type (i.e. one-vs-one comparison). OLS models were fit with dummy coded subtype variables as the de-835 
pendent variable, cycling each subtype as the reference subtype. T and p values for each of these models 836 
were stored, and the latter was FDR-corrected for number of comparisons (i.e. number of dependent var-837 
iables). These models were also adjusted for age, sex, education, clinical status (CN, MCI, AD), cohort and 838 
SuStaIn stage. For space reasons, the results of 3) are only visible in Extended Data Fig. S8. 839 

All models were subjected to diagnostics to ensure our data fulfilled assumptions of OLS regression 840 
models. We found the residuals of all models to be normally distributed (Anderson-Darling tests p>0.05). 841 
Further, we found no strong evidence for autocorrelation (Durbin Watson test, 1.5 < all models < 2.5), 842 
outliers (Cooks distance of all subjects < 0.5), multicollinearity (variance inflation factor (VIF) for all covari-843 
ates < 100; besides age [23-27], sex [8-12] and education [13-17], all VIF < 10) or heteroscedasticity (visual 844 
assessment of distribution around mean of residuals) in any of our models. 845 

We also assessed the relationship between SuStaIn stage and two variables: age and MMSE. For 846 
these analyses, stage was correlated with age and MMSE, and the results were visualized across the 847 
whole sample and also stratified by subtype. As a post-hoc analysis, we separated individuals into differ-848 
ent age groups: 65 or younger, and older than 65. We then reassessed age by SuStaIn stage correlations 849 
within each of these age groups. 850 

Longitudinal MMSE data was also available for individuals from all cohorts, totalling 735 individuals 851 
with at least two timepoints. 195 individuals had an additional third timepoint, 29 had a fourth, and 3 had 852 
a fifth. Mean latest follow-up was 1.72 years from PET scan (sd = 0.64). Linear mixed effect models were 853 
used to assess difference in longitudinal MMSE change between subtypes. All models were fit using the 854 
lme4 library in R, using type-III sum of squares, unstructured covariance matrices, and Satterthwaite’s 855 
approximation to calculate the denominator degrees of freedom for p-values. Models featured MMSE 856 
measurements as the dependent variable, interactions between time from baseline and dummy coded 857 
subtype variables as the independent variables of interest (cycling the reference subtype), subject ID as a 858 
random effect (allowing for random intercepts and slopes), and age, sex, education, cohort, dummy cod-859 
ed variables for MCI and AD, and SuStaIn stage as covariates of no interest. One vs all models were also fit 860 
for each subject using dummy coded subtype variables, and significant effects were reported. We addi-861 
tionally repeated the one vs. all subtype models within each cohort separately, and used this to calculate 862 
a meta-analysis by finding a weighted mean of the t-values and standard errors. Since this analysis was 863 
confirmatory, we used a one-tailed significance test to calculate the p-values. 864 
 865 
Replication Analysis. We performed two types of replication analysis. To ensure that our results were not 866 
driven by arbitrary z-score cutoffs, we reran models with completely different cutoffs. To ensure the re-867 
sults were not driven by our sample or unique to the flortaucipir radiotracer, we repeated the analysis de 868 
novo in a separate cohort using a different tau-PET radiotracer. 869 

SuStaIn require z-score values to anchor the psuedotime for each ROI (see section Subtype and 870 
Stage Inference above), and we chose values of 2,5,10 for all ROIs so as to not let any region bias or influ-871 
ence the model unduly, and to aid comparability across different regions. To ensure our results were not 872 
driven by this choice, we reran the model with a different set of z-score values chosen in a data-driven 873 
manner. The object was to allow the distribution of tau-PET data in each region to define natural way-874 
points in the data. For each input region, we fit Gaussian mixture models to the data, varying the number 875 
of components between 1 and 5. We used the model fit (AIC) to decide the optimal number of compo-876 
nents for each region. Finally, we used five-fold cross-validation to determine the boundaries of these 877 
Gaussians to define anchors for each regions. We did this separately for each ROI, and as a result, differ-878 
ent ROIs had different waypoints, and even different numbers of waypoints (Table S6). We then refit the 879 



 

 

SuStaIn model to the data and compared the results to the original model using spatial correlation (see 880 
below). 881 

While the five cohorts from the main discovery sample all use flortaucipir as the tau-PET tracer, a 882 
sixth cohort (BioFINDER II; BF2) was available that instead used the RO948 radiotracer. While the two 883 
tracers have similar binding patterns, RO948 tends to have less off-target binding in the basal ganglia and 884 
better MTL signal, but frequently boasts high meningeal signal that can affect cortical SUVR measure-885 
ment53. Because of these differences, we opted to leave BF2 out of the discovery sample, and instead use 886 
it as a replication cohort. This strategy allowed us to not only evaluate the stability of the subtypes in a 887 
new cohort, but also allowed us to evaluate whether the subtypes are robust to tau-PET radiotracer. 888 

We reran SuStaIn de novo in the BF2 sample, using identical procedures to those described above 889 
(Methods: Subtype and Stage Inference), although using the discovery sample to inform the number of 890 
subtypes. The resulting subtypes were visualized and quantitatively assessed using spatial correlations. 891 
Specifically, mean within-subtype SUVRs were computed for each (freesurfer) ROI, and each discovery 892 
subtype ROI-vector was correlated to each replication (BF2) subtype ROI-vector. To account for whether 893 
different sample sizes contribute to differing results between the discovery and replication datasets, we 894 
performed a split-half analysis with the discovery sample. Specifically, we split the discovery sample in 895 
half and ran SuStaIn separately on each half, once again using the original discovery sample to inform the 896 
number of subtypes. We then compared each half, which had a sample size comparable to that of BF2, to 897 
the BF2 samples using spatial correlations. 898 
 899 
Assessment of Longitudinal Stability. Longitudinal PET data was available for individuals across all cohorts 900 
except for UCSF, totaling 519 individuals with at least two time points (mean follow-up time = 1.42, sd = 901 
0.58, years). These longitudinal scans were used to validate the stability of subtypes over time, under the 902 
hypothesis that individuals should remain the same subtype, but should advance (or remain stable) in 903 
SuStaIn stage over time. ROIs for the longitudinal datasets were Z-scored as described above, but using 904 
the cross-sectional cohort as the cohort for normalization. The SuStaIn model fitted to the cross-sectional 905 
dataset was used to infer subtype and stage of longitudinal data (all timepoints). Confusion matrices were 906 
built to assess subtype stability between baseline and first follow-up. Stability was calculated as propor-907 
tion of individuals classified as the same subtype at follow-up, or who advanced from Stage 0 into a sub-908 
type, compared to the total number of individuals. Stability was also calculated excluding individuals who 909 
were classified as Stage 0 at baseline or follow-up. We also assessed the influence of subtype probability 910 
(i.e. the probability a subject falls into their given subtype) on individual subtype stability. Specifically, we 911 
compared the subtype probability of stable individuals to unstable individuals with a t-test. We additional-912 
ly calculated overall model stability after excluding individuals using various subtype probability thresh-913 
olds. 914 

Subtype progression was assessed by observing change in SuStaIn stage over time in stable subtype 915 
individuals. We calculated the proportion of individuals who advanced, were stable, or regressed in dis-916 
ease stage over time, before and after accounting for model uncertainty. Specifically, while stages are 917 
generally characterized by advancing abnormality in a given region, uncertainty leads to some stages be-918 
ing characterized by probabilities of progressing abnormalities in more than one region. Therefore, indi-919 
viduals who advanced or regressed to a stage with event probabilities overlapping with their previous 920 
stage were considered to be stable. We also calculated annual change in SuStaIn stage by dividing total 921 
change in SuStaIn stage by number of years between baseline and final available timepoint. We used one-922 
sample t-test against zero to assess whether significant change over time was observed across the whole 923 
sample, and within each subtype. We used ANOVAs and Tukey’s post-hoc tests to assess differences in 924 
annual change in stage across the different subtypes. We also correlated annual change in stage with 925 
baseline stage, and with age. 926 
 927 
Individual forecasting of longitudinal tau progression. SuStaIn models spatiotemporal subtype progressions, 928 
but does so using only cross-sectional data. Therefore, longitudinal data can be used as "unseen" or "left-929 



 

 

out" data, which can be used to test whether and to what extent individuals follow the trajectories pre-930 
dicted by SuStaIn. We accomplish this by using an individual’s subtype and stage probability to generate a 931 
predicted second time point, and comparing the change between baseline and predicted follow-up to 932 
change between baseline and actual follow-up. 933 

To do this, we first sought to predict the rate of change of stage for each individual. We trained a 934 
Lasso model to predict individual annualized change in SuStaIn stage (∆stage) using available data, and 935 
cross-validation to get out-of-sample predictions for each individual. Features included age, sex, educa-936 
tion, amyloid status, APOE4 status, baseline stage MMSE and dummy coded variables for MCI, AD, and 937 
each subtype. For each fold, the model was trained on 90% of the data, and this model was used to pre-938 
dict ∆stage in the 10% left out subjects. This process was repeated until predictions were made for each 939 
subject. The mean absolute error between the predicted and true ∆stage was 0.91 stages/year. The pre-940 
dicted ∆stage was used for subsequent aspects of the tau prediction. This is important, as we are there-941 
fore minimizing the amount of longitudinal information leaking into the forecast. 942 

Using this predicted ∆stage, we were then able to predict an individual’s stage at follow-up ki,new giv-943 
en any stage at baseline k, as ki,new = k +∆stageti, where ti is the time between follow-up visits in years. 944 

We can then evaluate the SuStaIn-predicted pattern of regional tau deposition at baseline Yi,j as 945 = , , , ,  

or at follow-up Zi,j as 946 = , , , , ,  

where Aj,c,k is an ’archetype’ indicating the expected amount of tau deposition for biomarker j at stage k of 947 
subtype c and Pi,c,k is the probability subject i is at stage k of subtype c. The archetype Aj,c,k is estimated 948 
probabilistically from the Markov chain Monte Carlo (MCMC) samples of uncertainty provided by the SuS-949 
taIn algorithm, giving an average archetypal pattern accounting for the uncertainty in the progression 950 
pattern of each subtype. This means that each SuStaIn-predicted pattern Yi,j accounts for both uncertainty 951 
in the progression pattern of each subtype as well as uncertainty in the subtype and stage of each individ-952 
ual. 953 

We can therefore represent the predicted change in tau as Zi,j −Yi,j. This vector represents the pre-954 
dicted change in tau Z-score in each of the ten spatial input features to SuStain (i.e. left and right tem-955 
poral, parietal, occipital, frontal and medial temporal lobes). We evaluate the prediction by computing, 956 
for each individual, the correlation between the predicted and true regional tau change vectors. We eval-957 
uate the overall prediction across the whole sample, and within-subtypes, by comparing the average pre-958 
diction against chance using one-sample t-tests against a correlation of zero. 959 
 960 
Epidemic spreading model. Perhaps the most prominent hypothesis of tau spread suggests tau oligomers 961 
spread directly from neuron to neuron through axonal connections. Under this hypothesis, diverse but 962 
systematic variations in tau spreading may be driven by variability in macroscale connectivity, network 963 
organization or vulnerable circuits. We test this idea by investigating whether a network diffusion model 964 
simulating tau spread through the human connectome can recapitulate the various subtype patterns dis-965 
covered by SuStaIn. We have previously applied the epidemic spreading model (ESM)58 to tau-PET data, 966 
showing diffusion of an agent through human connectivity data (measured with diffusion imaging-based 967 
tractography) can explain a majority of the variance of spatial tau patterns across a population of individ-968 
uals along the AD spectrum29. We here conduct the exact same analysis separately for each subtype iden-969 
tified through SuStaIn. We further allow the ESM to identify regional epicenters separately for each sub-970 
type, under the hypothesis that different subtype patterns may be driven by prominence of different cor-971 
ticolimbic networks. 972 



 

 

As described in 29, each tau-PET ROI was converted to tau-positive probabilities using mixture mod-973 
eling. This process is similar to the Z-scoring procedure (Extended Data Fig. S1), though in this case, the 974 
probability that values fall onto the abnormal distribution is ascertained using five-fold cross-validation. 975 
These measures represent the probability that a given ROI exhibits tau in the abnormal range. Connectivi-976 
ty was measured from a dataset of 60 young healthy subjects from the CMU-60 DSI Template 977 
(http://www.psy.cmu. edu/coaxlab/data.html). Deterministic tractography was calculated for each indi-978 
vidual by finding connections between ROIs using orientation distribution functions, and connectivity was 979 
measured using the anatomical connection density (ACD) metric58. Images were assessed for quality and 980 
connectomes were averaged across all 60 individuals. For each subtype separately, the ESM was fitted 981 
across all individuals, cycling through the average of each left-right pair of cortical ROIs (including hippo-982 
campus and amygdala, 33 pairs in total) as the model epicenter. The best fitting epicenter was selected by 983 
finding the model with the minimum mean euclidian distance between model predicted and observed tau 984 
spatial pattern across subjects. Model accuracy was represented as the r2 between the mean observed 985 
ROI-level tau-PET probabilities and mean predicted probabilities across subjects. For each subtype, we 986 
compared the r2 of the model using the best-fitting epicenter to the r2 of models using an entorhinal epi-987 
center. To gain confidence in the subject-specific epicenter, we bootstrapped the sample 1000 times and 988 
recomputed the best-fitting epicenter for each subtype. Epicenter probability was calculated as the fre-989 
quency that an epicenter was selected as best epicenter across bootstrap samples. 990 

We were additionally interested in how secondary seeding evolved over the course of each subtype 991 
progression. While the ESM is designed to ascertain the true pathological epicenter, the selected epicen-992 
ter reflects the seeding point that best matches the spatial pattern of the dependent variable. As such, it 993 
is likely that "secondary epicenters" become important for disease spread at later disease stages. We 994 
binned individuals for each subtype into disease stage bins, as with Fig 1e. Individual epicenters were as-995 
certained for each subject, and were aggregated based on lobe (MTL, temporal, frontal, parietal, occipi-996 
tal). We then calculated epicenter frequency among individuals in each stage bin for each subtype. This 997 
allowed us to track how the secondary epicenter evolve throughout the disease course for each subtype 998 
trajectory. 999 

We repeated this same analysis with a different connectome based on rsfMRI connectivity from an 1000 
elderly population, and using a higher-resolution atlas. The sample consisted of rsfMRI scans from 422 1001 
healthy elderly controls (166 Aβ-positive), 138 individuals with subjective cognitive decline but without 1002 
objective impairment (48 Aβ-positive), and 83 Aβ-positive MCI patients. 57 individuals overlapped be-1003 
tween this sample and the tau-PET discovery sample used for analysis. Functional data was processed 1004 
using modified CPAC pipeline60 involving slice time correction, bandpass filtering at 0.01-0.1 Hz, regression 1005 
of motion, white matter and CSF signal, compcor physiological noise, and the 24 Friston parameters. The 1006 
timeseries also underwent adaptive censoring of volumes for which DVARS jumps above median+1.5*IQR 1007 
were observed. Timeseries were averaged within ROIs of the 246-ROI Brainnetome cortical/subcortical 1008 
atlas (https://atlas.brainnetome.org/), nodewise connectivity was calculated using either Fisher’s Z trans-1009 
formed correlations or partial-correlation (see below). The ESM was fit using the bilateral A35/36r ROI as 1010 
model epicenter, and the following combinations of parameters were varied: regions (cortical only or all 1011 
regions), subject-base (Aβ-negative only vs. all subjects), density (edgewise thresholding at 0.02, 0.5, 0.1, 1012 
0.25, 1, or partial correlation with no thresholding, and normalization (whether connectivity matrices 1013 
were normalized after density thresholding). The only parameter strongly affecting model performance 1014 
was density threshold – partial correlation far outperformed all other conditions. Using all regions over 1015 
only cortical regions bore slight advantages, as did using all subjects over only Aβ-negative. Normalization 1016 
had no effect on outcomes. The best-fitting model was used for further analysis. The ESM was fit to each 1017 
subject separately, and epicenter bootstrapping was performed, both as described above. 1018 
 1019 
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