17 research outputs found
Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions
The reaction was investigated with the TOF
spectrometer, which is an external experiment at the accelerator COSY
(Forschungszentrum J\"ulich, Germany). Total as well as differential cross
sections were determined at an excess energy of (). Using the total cross section of for the
reaction determined here and existing data for the reaction
, the ratio
turns out to be
significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The
uncertainty of this ratio is considerably smaller than in previous
determinations. The differential distributions show that the
production is still dominated by S-wave production at this excess energy,
however higher partial waves clearly contribute. A comparison of the measured
angular distributions for production to published distributions for
production at shows that the data are consistent with an
identical production mechanism for both vector mesons
Production of mesons in proton-proton collisions
The cross section for the production of mesons in proton-proton
collisions has been measured in a previously unexplored region of incident
energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy,
respectively. The angular distribution of the at =173 MeV is
strongly anisotropic, demonstrating the importance of partial waves beyond pure
s-wave production at this energy.Comment: 12 pages, 4 figures submitted to Physics Letters B v2: figure 1
added, discussion detailing the data analysis, figure 3 (fig. 2 in v1)
modified in line styles and systematic errors displayed on dat
Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions
The incident energy at which the azimuthal distributions in semi-central
heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran,
is studied as a function of mass of emitted particles, their transverse
momentum and centrality for Au+Au collisions. The analysis is performed in a
reference frame rotated with the sidewards flow angle, Theta_flow, relative to
the beam axis. A systematic decrease of E_tran as function of mass of the
reaction products, their transverse momentum and collision centrality is
evidenced. The predictions of a microscopic transport model (IQMD) are compared
with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl.
Phys.
Systematic study of the pp -> pp omega reaction
A systematic study of the production of omega-mesons in
proton-proton-collisions was carried out in a kinematically complete experiment
at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected
using the large-acceptance COSY-TOF spectrometer at an external beam line at
the Cooler Synchrotron COSY at Forschungszentrum J\"ulich. The total cross
section, angular distributions of both omega-mesons and protons were measured
and presented in various reference frames such as the overall CMS, helicity and
Jackson frame. In addition, the orientation of the omega-spin and invariant
mass spectra were determined. We observe omega-production to take place
dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and,
additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant
omega-production via N^*-resonances was found, as proton angular distributions
are almost isotropic and invariant mass spectra are compatible with phase space
distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for
omega-production was concluded from the orientation of the decay plane of the
omega-meson. Although the Jackson angle distributions in the omega-p-Jackson
frame are anisotropic we argue that this is not an indication of a resonance
but rather a kinematical effect reflecting the anisotropy of the omega angular
distribution. The helicity angle distribution in the omega-p-helicity frame
shows an anisotropy which probably reflects effects of the omega angular
momenta in the final state; this observable may be, in addition to the
orientation of the omega decay plane, the most sensitive one to judge the
validity of theoretical descriptions of the production process.Comment: 17 pages, 16 figures, accepted for publication in EPJ
Production of Lambda and Sigma^0 hyperons in proton-proton collisions
This paper reports results on simultaneous measurements of the reaction
channels pp -> pK+\Lambda and pp -> pK+\Sigma^0 at excess energies of 204, 239,
and 284 MeV (\Lambda) and 127, 162, and 207 MeV (\Sigma^0). Total and
differential cross sections are given for both reactions. It is concluded from
the measured total cross sections that the high energy limit of the cross
section ratio is almost reached at an excess energy of only about 200 MeV. From
the differential distributions observed in the overall CMS as well as in the
Jackson and helicity frames, a significant contribution of interfering nucleon
resonances to the \Lambda production mechanism is concluded while resonant
\Sigma^0-production seems to be of lesser importance and takes place only
through specific partial waves of the entrance channel. The data also indicate
that kaon exchange plays a minor role in the case of \Lambda- but an important
role for \Sigma^0-production. Thus the peculiar energy dependence of the
\Lambda-to-\Sigma^0 cross section ratio appears in a new light as its
explanation requires more than mere differences between the p\Lambda and the
p\Sigma^0 final state interaction. The data provide a benchmark for theoretical
models already available or yet to come.Comment: 18 pages, 10 figures; accepted by The European Physical Journal A
(EPJ A
The pK0\Sigma+ final state in proton-proton collisions
This paper reports results from a study of the reaction pp->pK0\Sigma+ at
beam momenta of p_{beam} = 2950, 3059, and 3200 MeV/c (excess energies of
\epsilon= 126, 161, and 206 MeV). Total cross sections were determined for all
energies; a set of differential cross sections (Dalitz plots; invariant mass
spectra of all two-body subsystems; angular distributions of all final state
particles; distributions in helicity and Jackson frames) are presented for
\epsilon= 161 MeV. The total cross sections are proportional to the volume of
available three-body phase-space indicating that the transition matrix element
does not change significantly in this range of excess energies. It is concluded
from the differential data that the reaction proceeds dominantly via the
N(1710)P_{11} and/or N(1720)P_{13} resonance(s); N(1650)S_{11} and
\Delta(1600)P_{33} could also contribute.Comment: 15 pages, 10 figure
Capture reactions in the helium burning of stars
info:eu-repo/semantics/publishedNuclei in the Cosmos. Proceedings, 4th International Symposium, Notre Dame, Indiana (USA), 20 - 27 June 199
Neutron-induced fission cross sections of short-lived actinides with the surrogate reaction method
Neutron-induced fission cross sections for 242,243Cm and 241Am have been obtained with the surrogate reaction method. Recent results for the neutron-induced cross section of 243Cm are questioned by the present data. For the first time, the 242Cm cross section has been determined up to the onset of second-chance fission. The good agreement at the lowest excitation energies between the present results and the existing neutron-induced data indicates that the distributions in spin and parity of states populated with both techniques are similar