32 research outputs found

    A Regulatory Network for Coordinated Flower Maturation

    Get PDF
    For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs

    Control of Jasmonate Biosynthesis and Senescence by miR319 Targets

    Get PDF
    Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate

    A Regulatory Network for Coordinated Flower Maturation

    Get PDF
    For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs

    Chloroplastic Phosphoadenosine Phosphosulfate Metabolism Regulates Basal Levels of the Prohormone Jasmonic Acid in Arabidopsis Leaves1[W][OA]

    Get PDF
    Levels of the enzymes that produce wound response mediators have to be controlled tightly in unwounded tissues. The Arabidopsis (Arabidopsis thaliana) fatty acid oxygenation up-regulated8 (fou8) mutant catalyzes high rates of α -linolenic acid oxygenation and has higher than wild-type levels of the α -linolenic acid-derived wound response mediator jasmonic acid (JA) in undamaged leaves. fou8 produces a null allele in the gene SAL1 (also known as FIERY1 or FRY1). Overexpression of the wild-type gene product had the opposite effect of the null allele, suggesting a regulatory role of SAL1 acting in JA synthesis. The biochemical phenotypes in fou8 were complemented when the yeast (Saccharomyces cerevisiae) sulfur metabolism 3′(2′), 5′-bisphosphate nucleotidase MET22 was targeted to chloroplasts in fou8. The data are consistent with a role of SAL1 in the chloroplast-localized dephosphorylation of 3′-phospho-5′-adenosine phosphosulfate to 5′-adenosine phosphosulfate or in a closely related reaction (e.g. 3′,5′-bisphosphate dephosphorylation). Furthermore, the fou8 phenotype was genetically suppressed in a triple mutant (fou8 apk1 apk2) affecting chloroplastic 3′-phospho-5′-adenosine phosphosulfate synthesis. These results show that a nucleotide component of the sulfur futile cycle regulates early steps of JA production and basal JA levels

    Jasmonate Controls Polypeptide Patterning in Undamaged Tissue in Wounded Arabidopsis Leaves1[W][OA]

    No full text
    Wounding initiates a strong and largely jasmonate-dependent remodelling of the transcriptome in the leaf blades of Arabidopsis (Arabidopsis thaliana). How much control do jasmonates exert on wound-induced protein repatterning in leaves? Replicated shotgun proteomic analyses of 2.5-mm-wide leaf strips adjacent to wounds revealed 106 differentially regulated proteins. Many of these gene products have not emerged as being wound regulated in transcriptomic studies. From experiments using the jasmonic acid (JA)-deficient allene oxide synthase mutant we estimated that approximately 95% of wound-stimulated changes in protein levels were deregulated in the absence of JA. The levels of two tonoplast proteins already implicated in defense response regulation, TWO-PORE CHANNEL1 and the calcium-V-ATPase ACA4 increased on wounding, but their transcripts were not wound inducible. The data suggest new roles for jasmonate in controlling the levels of calcium-regulated pumps and transporters, proteins involved in targeted proteolysis, a putative bacterial virulence factor target, a light-dependent catalyst, and a key redox-controlled enzyme in glutathione synthesis. Extending the latter observation we found that wounding increased the proportion of oxidized glutathione in leaves, but only in plants able to synthesize JA. The oxidizing conditions generated through JA signaling near wounds help to define the cellular environment in which proteome remodelling occurs

    Arabidopsis

    No full text

    MYC2 <sup>E165K</sup> confers extreme hypersensitivity to exogenous JA.

    No full text
    <p>(A) Representative 7-do seedlings of WT and <i>myc2-322B</i> (<i>m2-322B</i>) mutants grown in control conditions (ctrl) or on media supplemented with 25 μM MeJA. Scale bar = 0.5 cm (B) Confocal microscopy images of propidium iodide stained primary root meristems of WT and <i>myc2-322B</i> 5-do seedlings grown in the absence (ctrl) or presence of 25 μM MeJA. Scale bar = 50 μm. Vertical white bars represent the root division zone and the horizontal yellow dashed line marks the root—hypocotyl boundary of <i>myc2-322B</i> grown in the presence of MeJA. (C) Root length of 7-do seedlings of the indicated genotype grown in the absence (control) or presence of 25 μM MeJA. <i>n-1</i> refers to <i>ninja-1</i>. Data shown are means (± SD) from 20–49 plants. Letters above bars indicate statistically significant differences between samples as determined by Tukey’s HSD test (P < 0.01).</p

    Interventions used in this study to manipulate the jasmonate pathway.

    No full text
    <p>Shown in red are: 1. loss-of-function mutation of the JA synthesis gene <i>allene oxide synthase</i> (<i>aos</i>); 2. treatment with exogenous JA; 3. loss-of-function mutations in the negative regulator <i>NINJA</i>; 4. gain-of-function mutation of MYC transcription factors. The dashed box surrounding MYC indicates that it is conceptually possible to use an overactive MYC to drive JA responses in the absence of JA synthesis (step 1) and of negative regulators like NINJA (steps 1 and 3 combined). This was achieved using a novel <i>myc2</i> mutant that amplifies JA responses.</p
    corecore