140 research outputs found

    Fault Diagnosis in Fuzzy Discrete Event System: Incomplete Models and Learning

    Get PDF
    Nowadays, determining faults in non-stationary environment and that can deal with the problems of fuzziness impreciseness and subjectivity is a challenging task in complex systems such as nuclear center, or wind turbines, etc. Our objective in this paper is to develop models based on fuzzy finite state automaton with fuzzy variables describing the industrial process in order to detect anomalies in real time and possibly in anticipation. A diagnosis method has for goal to alert actors responsible for managing operations and resources, able to adapt to the emergence of new procedures or improvisation in the case of unexpected situations. The diagnoser module use the outputs events and membership values of each active state of the model as input events

    On the mechanisms of precipitation of graphene on nickel thin films

    Full text link
    Growth on transition metal substrates is becoming a method of choice to prepare large-area graphene foils. In the case of nickel, where carbon has a significant solubility, such a growth process includes at least two elementary steps: (1) carbon dissolution into the metal, and (2) graphene precipitation at the surface. Here, we dissolve calibrated amounts of carbon in nickel films, using carbon ion implantation, and annealing at 725 \circ or 900 \circ. We then use transmission electron microscopy to analyse the precipitation process in detail: the latter appears to imply carbon diffusion over large distances and at least two distinct microscopic mechanisms

    Optimization of organized silicon nanowires growth inside porous anodic alumina template using hot wire chemical vapor deposition process

    No full text
    International audienceA Hot Wire assisted Chemical Vapor Deposition (HWCVD) process has been developed for producing highdensity arrays of parallel, straight and organized silicon nanowires (SiNWs) inside vertical Porous Anodic Alumina (PAA) templates, exploring temperatures ranging from 430 °C to 600 °C, and pressures varying between 2.5 and 7.5 mbar. In order to prevent parasitic amorphous silicon (a-Si) deposit and to promote the crystalline SiNWs growth, we used a tungsten hot wire to partially crack H2 into atomic hydrogen, which acts like a selective etchant regarding a-Si. Here we describe the optimization route we followed to limit the deposit of a-Si onto the surface of the porous membrane and on the walls of the pores, which led to the possibility to grow SiNWs inside the PAA membranes. Such an approach has high potentialities for device realization, like PIN junctions, FETs or electrodes for Li-ion batteries

    Agglutination of benthic foraminifera in relation to mesoscale bathymetric features in the abyssal NE Atlantic (Porcupine Abyssal Plain)

    Get PDF
    Abyssal hills, small topographic features rising above the abyssal seafloor (< 1000 m altitude), have distinct environmental characteristics compared to abyssal plains, notably the presence of coarser-grained sediments. As a result, they are a major source of habitat heterogeneity in the deep sea. The aim of this study was to investigate whether there is a link between abyssal hills and the test characteristics of selected agglutinated benthic foraminiferal species. We analysed 1) the overall morphometry, and 2) the granulometric and chemical (elemental) characteristics of the agglutinated tests of ten common foraminiferal species (Adercotryma glomerata, Ammobaculites agglutinans, Cribrostomoides subglobosus, Lagenammina sp.1, Nodulina dentaliniformis, Portatrochammina murrayi, three Reophax sp. and Recurvoides sp. 9) at four sites (two on top of abyssal hills and two on the adjacent plain) in the area of the Porcupine Abyssal Plain Sustained Observatory, northeast Atlantic. The foraminiferal test data were compared with the particle size distribution and elemental composition of sediments from the study sites in order to explore possible grain size and mineral selectivity. We found differences in the visual appearance of the tests (i.e. the degree of irregularity in their shape), which was confirmed by morphometric analyses, related to seafloor topography. The agglutinated foraminifera selected different sized particles on hills and plains, reflecting the distinct granulometric characteristics of these settings. These characteristics (incorporation of coarse particles, test morphometry) could provide evidence for the recognition of ancient abyssal hill environments, as well as other palaeoceanographic settings that were characterised by enhanced current flow. Furthermore, analyses of sediment samples from the hill and plain sites using wavelength dispersive X-ray fluorescence (WD-XRF) yielded different elemental profiles from the plains, probably a result of winnowing on the hills, although all samples were carbonate-rich. In contrast, the majority of the agglutinated tests were rich in silica, suggesting a preferential selection for quartz

    Meningitis Dipstick Rapid Test: Evaluating Diagnostic Performance during an Urban Neisseria meningitidis Serogroup A Outbreak, Burkina Faso, 2007

    Get PDF
    Meningococcal meningitis outbreaks occur every year during the dry season in the “meningitis belt” of sub-Saharan Africa. Identification of the causative strain is crucial before launching mass vaccination campaigns, to assure use of the correct vaccine. Rapid agglutination (latex) tests are most commonly available in district-level laboratories at the beginning of the epidemic season; limitations include a short shelf-life and the need for refrigeration and good technical skills. Recently, a new dipstick rapid diagnostic test (RDT) was developed to identify and differentiate disease caused by meningococcal serogroups A, W135, C and Y. We evaluated the diagnostic performance of this dipstick RDT during an urban outbreak of meningitis caused by N. meningitidis serogroup A in Ouagadougou, Burkina Faso; first against an in-country reference standard of culture and/or multiplex PCR; and second against culture and/or a highly sensitive nested PCR technique performed in Oslo, Norway. We included 267 patients with suspected acute bacterial meningitis. Using the in-country reference standard, 50 samples (19%) were positive. Dipstick RDT sensitivity (N = 265) was 70% (95%CI 55–82) and specificity 97% (95%CI 93–99). Using culture and/or nested PCR, 126/259 (49%) samples were positive; dipstick RDT sensitivity (N = 257) was 32% (95%CI 24–41), and specificity was 99% (95%CI 95–100). We found dipstick RDT sensitivity lower than values reported from (i) assessments under ideal laboratory conditions (>90%), and (ii) a prior field evaluation in Niger [89% (95%CI 80–95)]. Specificity, however, was similar to (i), and higher than (ii) [62% (95%CI 48–75)]. At this stage in development, therefore, other tests (e.g., latex) might be preferred for use in peripheral health centres. We highlight the value of field evaluations for new diagnostic tests, and note relatively low sensitivity of a reference standard using multiplex vs. nested PCR. Although the former is the current standard for bacterial meningitis surveillance in the meningitis belt, nested PCR performed in a certified laboratory should be used as an absolute reference when evaluating new diagnostic tests

    Toward an Anthropology of Mathematizing

    Get PDF
    This essay investigates the practical ways that artists and craftspeople cultivate mathematical sensibilities through their practical immersion in making and problem-solving. Mathematical sensibilities refer to skilled kinds of perception and heightened levels of attention and discernment regarding the qualitative properties of an object or composition, such as its shape, proportion, balance, symmetry, centredness, alignment or levelness. It also includes an ‘intuitive’ quantitative sense of volume, mass, weight, thickness and dimension. The objective of the investigation is not to describe the ways that a maker’s existing knowledge and training in formal mathematics is put into practice, but rather to elucidate the ways that their practices of making produce kinds of ‘non-formalised’, context-dependent mathematical understanding and knowledge. The starting point for exploring embodied mathematizing is therefore not from the cognitive or neurosciences, psychology or formal mathematics, it is argued, but rather from a phenomenological approach – ‘an opening on the world’ – that attends to person, materials, tools and other physical and qualitative features that make up the total environment in which activity unfolds

    What is poststructuralism?

    Get PDF
    In this essay, I discuss the vitality and the limits of the poststructural archive. I argue against the temptation to essentialise poststructuralism or define its ‘ontology’, instead I present some of the avenues that can be taken to further its theoretical practice. With Trump and the rise of ‘post-truth’ politics, poststructural political thought has recently come back to the centre of political debate. By using Pierre Macherey and François Châtelet’s perspective on Marxism, I turn to contemporary problems and studies to imagine how to renew the poststructuralist experience of thought. Following Boris Groys, I suggest that by producing theory as form, artists had a more immediate recourse to theoretical practice, by using all sorts of media to perform knowledge. Finally, by mainly referring to the work of Gilles Deleuze and Michel Foucault, I present some elements of a poststructural critique of political economy. I do this not by forcing the application of poststructural theories or concepts onto a supposedly external reality, but by immanently integrating more and more social and political problems into the schemes of thought. A poststructural theoretical practice means integrating into thought problems and events, in order to compose with them, and not simply study discursive strategies.<br/

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
    corecore