628 research outputs found

    A 64-channel, 1.1-pA-accurate on-chip potentiostat for parallel electrochemical monitoring

    Get PDF
    Electrochemical monitoring is crucial for both industrial applications, such as microbial electrolysis and corrosion monitoring as well as consumer applications such as personal health monitoring. Yet, state-of-the-art integrated potentiostat monitoring devices have few parallel channels with limited flexibility due to their channel architecture. This work presents a novel, widely scalable channel architecture using a switch capacitor based Howland current pump and a digital potential controller. An integrated, 64-channel CMOS potentiostat array has been fabricated. Each individual channel has a dynamic current range of 120dB with 1.1pA precision with up to 100kHz bandwidth. The on-chip working electrodes are post-processed with gold to ensure (bio)electrochemical compatibility

    Diversity of Listeria monocytogenes strains of clinical and food chain origins in Belgium between 1985 and 2014

    Get PDF
    Listeriosis is a rare but severe disease, mainly caused by Listeria monocytogenes. This study shows the results of the laboratory-based surveillance of Listeriosis in Belgium over the period 1985-2014. Besides the incidence and some demographic data we present also more detailed microbiological and molecular characteristics of human strains isolated since 2000. The strains from the latter period were compared to food and animal strains from the same period. Our study shows that different food matrices were commonly contaminated with L. monocytogenes presenting the same PFGE profile as in patient's isolates. Since 1985, we observed a significant decrease in incidence of the Materno-Neonatal cases (from 0.15 to 0.04 cases /100,000 inhabitants-year), which is probably to be attributed to active prevention campaigns targeting pregnant women. Despite the strengthening of different control measures by the food industry, the incidence of non-Materno-Neonatal listeriosis increased in Belgium (from 0.3 to 0.7 cases /100,000 inhabitants-year), probably due to the rise of highly susceptible patients in an aging population. This significant increase found in non-Materno-Neonatal cases (slope coefficient 7.42%/year, P< 0.0001) can be attributed to significant increase in incidence of isolates belonging to serovars 1/2a (n = 393, slope coefficient 6.62%/year, P< 0.0001). Although resistance to antimicrobials is rare among L. monocytogenes isolates, a trend to increasing MIC values is evident with chloramphenicol, amoxicillin, tetracycline and ciprofloxacin. We show that fluoroquinolone resistance is not linked to chromosomal mutations, but caused by a variety of efflux pumps. Our study also shows that huge majority of known underlying pathologies (426 out of 785 cases) were cancers (185/426, 43.1%) and haematological malignancies (75/185, 40.5%). Moreover the risk population is susceptible to low levels of contamination in food stressing the need of prevention campaigns specifically targeting these persons

    Complete genome sequence of the Pseudomonas aeruginosa bacteriophage phiIBB-PAA2

    Get PDF
    Pseudomonas aeruginosa phage phiIBB-PAA2 is a broad-host-range virus isolated from raw hospital sewage (Porto, Portugal). This phage has a terminally redundant (183 bp), 45,344-bp double-stranded DNA (dsDNA) genome encoding 66 coding sequences (CDSs) and 3 tRNAs. It belongs to the family Podoviridae and the genus Luz24likevirus.D.P.P. and S.S. acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) through the grants SFRH/BD/764407/2011 and SFRH/BPD/48803/2008. This work was supported by the FEDER fund through the COMPETE program and through the National fund of FCT in the scope of the project PTDC/EBB-BIO/114760/2009 (FCOMP-01-0124-FEDER-014759)

    The genome and proteome of the Kluyvera bacteriophage Kvp1 – another member of the T7-like Autographivirinae

    Get PDF
    BACKGROUND: Kluyvera, a genus within the family Enterobacteriaceae, is an infrequent cause of human infections. Bacteriophage Kvp1, the only bacteriophage isolated for one of its species, Kluyvera cryocrescens, is a member of the viral family Podoviridae. RESULTS: The genome of Kvp1, the first Kluyvera cryocrescens-specific bacteriophage, was sequenced using pyrosequencing (454 technology) at the McGill University and Genome Québec Innovation Centre. The two contigs were closed using PCR and the sequence of the terminal repeats completed by primer walking off the phage DNA. The phage structural proteome was investigated by SDS-PAGE and mass spectrometry. CONCLUSION: At 39,472 bp, the annotated genome revealed a closer relationship to coliphage T3 than T7 with Kvp1 containing homologs to T3 early proteins S-adenosyl-L-methionine hydrolase (0.3) and protein kinase (0.7). The quantitative nature of the relationships between Kvp1 and the other members of the T7-like virus genus (T7, T3, φA1122, φYeO3-12, Berlin, K1F, VP4 and gh-1) was confirmed using CoreGenes

    Micropatterning and dynamic swelling of photo-crosslinkable electroactive Pluronic hydrogel

    Get PDF
    AbstractThis paper presents the controlled swelling of a novel combination of materials for microsystems: a photopatternable electroactive polymer gel. It is very promising as an actuator material for e.g. biomedical or microfluidic applications as it shows a volume swelling of over 50% upon application of very modest voltages in a liquid environment. We present the synthesis of the novel material, the development of a MEMS compatible fabrication process and the measurements on fabricated test structures

    A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen that forms highly stable communities - biofilms, which contribute to the establishment and maintenance of infections. The biofilm state and intrinsic/acquired bacterial resistance mechanisms contribute to resistance/tolerance to antibiotics that is frequently observed in P. aeruginosa isolates. Here we describe the isolation and characterization of six novel lytic bacteriophages: viruses that infect bacteria, which together efficiently infect and kill a wide range of P. aeruginosa clinical isolates. The phages were used to formulate a cocktail with the potential to eliminate P. aeruginosa PAO1 planktonic cultures. Two biofilm models were studied, one static and one dynamic, and the phage cocktail was assessed for its ability to reduce and disperse the biofilm biomass. For the static model, after 4 h of contact with the phage suspension (MOI 10) more than 95% of biofilm biomass was eliminated. In the flow biofilm model, a slower rate of activity by the phage was observed, but 48 h after addition of the phage cocktail the biofilm was dispersed, with most cells eliminated (> 4 logs) comparing with the control. This cocktail has the potential for development as a therapeutic to control P. aeruginosa infections, which are predominantly biofilm centred

    Development of an NGS-based workflow for improved monitoring of circulating plasmids in support of risk assessment of antimicrobial resistance gene dissemination

    Get PDF
    Antimicrobial resistance (AMR) is one of the most prominent public health threats. AMR genes localized on plasmids can be easily transferred between bacterial isolates by horizontal gene transfer, thereby contributing to the spread of AMR. Next-generation sequencing (NGS) technologies are ideal for the detection of AMR genes; however, reliable reconstruction of plasmids is still a challenge due to large repetitive regions. This study proposes a workflow to reconstruct plasmids with NGS data in view of AMR gene localization, i.e., chromosomal or on a plasmid. Whole-genome and plasmid DNA extraction methods were compared, as were assemblies consisting of short reads (Illumina MiSeq), long reads (Oxford Nanopore Technologies) and a combination of both (hybrid). Furthermore, the added value of conjugation of a plasmid to a known host was evaluated. As a case study, an isolate harboring a large, low-copymcr-1-carrying plasmid (>200 kb) was used. Hybrid assemblies of NGS data obtained from whole-genome DNA extractions of the original isolates resulted in the most complete reconstruction of plasmids. The optimal workflow was successfully applied to multidrug-resistantSalmonellaKentucky isolates, where the transfer of an ESBL-gene-containing fragment from a plasmid to the chromosome was detected. This study highlights a strategy including wet and dry lab parameters that allows accurate plasmid reconstruction, which will contribute to an improved monitoring of circulating plasmids and the assessment of their risk of transfer
    corecore