1,016 research outputs found
Phase transitions as topology changes in configuration space: an exact result
The phase transition in the mean-field XY model is shown analytically to be
related to a topological change in its configuration space. Such a topology
change is completely described by means of Morse theory allowing a computation
of the Euler characteristic--of suitable submanifolds of configuration
space--which shows a sharp discontinuity at the phase transition point, also at
finite N. The present analytic result provides, with previous work, a new key
to a possible connection of topological changes in configuration space as the
origin of phase transitions in a variety of systems.Comment: REVTeX file, 5 pages, 1 PostScript figur
Grafting vigour is associated with DNA de-methylation in eggplant.
In horticulture, grafting is a popular technique used to combine positive traits from two different plants. This is achieved by joining the plant top part (scion) onto a rootstock which contains the stem and roots. Rootstocks can provide resistance to stress and increase plant production, but despite their wide use, the biological mechanisms driving rootstock-induced alterations of the scion phenotype remain largely unknown. Given that epigenetics plays a relevant role during distance signalling in plants, we studied the genome-wide DNA methylation changes induced in eggplant (Solanum melongena) scion using two interspecific rootstocks to increase vigour. We found that vigour was associated with a change in scion gene expression and a genome-wide hypomethylation in the CHH context. Interestingly, this hypomethylation correlated with the downregulation of younger and potentially more active long terminal repeat retrotransposable elements (LTR-TEs), suggesting that graft-induced epigenetic modifications are associated with both physiological and molecular phenotypes in grafted plants. Our results indicate that the enhanced vigour induced by heterografting in eggplant is associated with epigenetic modifications, as also observed in some heterotic hybrids
Hamiltonian dynamics and geometry of phase transitions in classical XY models
The Hamiltonian dynamics associated to classical, planar, Heisenberg XY
models is investigated for two- and three-dimensional lattices. Besides the
conventional signatures of phase transitions, here obtained through time
averages of thermodynamical observables in place of ensemble averages,
qualitatively new information is derived from the temperature dependence of
Lyapunov exponents. A Riemannian geometrization of newtonian dynamics suggests
to consider other observables of geometric meaning tightly related with the
largest Lyapunov exponent. The numerical computation of these observables -
unusual in the study of phase transitions - sheds a new light on the
microscopic dynamical counterpart of thermodynamics also pointing to the
existence of some major change in the geometry of the mechanical manifolds at
the thermodynamical transition. Through the microcanonical definition of the
entropy, a relationship between thermodynamics and the extrinsic geometry of
the constant energy surfaces of phase space can be naturally
established. In this framework, an approximate formula is worked out,
determining a highly non-trivial relationship between temperature and topology
of the . Whence it can be understood that the appearance of a phase
transition must be tightly related to a suitable major topology change of the
. This contributes to the understanding of the origin of phase
transitions in the microcanonical ensemble.Comment: in press on Physical Review E, 43 pages, LaTeX (uses revtex), 22
PostScript figure
MAGIC eyes to the extreme: testing the blazar emission models on EHBLs
Extreme high-energy peaked BL Lac objects (EHBLs) are blazars whose
synchrotron emission peaks at exceptionally high energies, above few keV, in
the hard X-ray regime. So far, only a handful of those objects has been
detected at very high energy (VHE, E > 100 GeV) gamma rays by Imaging
Atmospheric Cherenkov Telescopes. Very remarkably, VHE observations of some of
these blazars (like 1ES 0229+200) have provided evidence of a VHE gamma-ray
emission extending to several TeV, which is difficult to explain with standard,
one-zone synchrotron self-Compton models usually applied to BL Lac objects. The
MAGIC collaboration coordinated a multi-year, multi-wavelength observational
campaign on ten targets. The MAGIC telescopes detected VHE gamma rays from four
EHBLs. In this paper we focus on the source 1ES 1426+426 and its X-ray and VHE
gamma-ray properties. The results of different models (synchrotron
self-Compton, spine-layer, hadronic) reproducing the broadband spectral energy
distribution are also presented.Comment: Proceedings of the 36th International Cosmic Ray Conference
(ICRC2019), July 24th-August 1st, 2019. Madison, WI, U.S.
Riemannian theory of Hamiltonian chaos and Lyapunov exponents
This paper deals with the problem of analytically computing the largest
Lyapunov exponent for many degrees of freedom Hamiltonian systems. This aim is
succesfully reached within a theoretical framework that makes use of a
geometrization of newtonian dynamics in the language of Riemannian geometry. A
new point of view about the origin of chaos in these systems is obtained
independently of homoclinic intersections. Chaos is here related to curvature
fluctuations of the manifolds whose geodesics are natural motions and is
described by means of Jacobi equation for geodesic spread. Under general
conditions ane effective stability equation is derived; an analytic formula for
the growth-rate of its solutions is worked out and applied to the
Fermi-Pasta-Ulam beta model and to a chain of coupled rotators. An excellent
agreement is found the theoretical prediction and the values of the Lyapunov
exponent obtained by numerical simulations for both models.Comment: RevTex, 40 pages, 8 PostScript figures, to be published in Phys. Rev.
E (scheduled for November 1996
Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics
Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics – such as mulching films – are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1–40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials
Increased salience of gains versus decreased associative learning differentiate bipolar disorder from schizophrenia during incentive decision making
Background Abnormalities in incentive decision making, typically assessed using the Iowa Gambling Task (IGT), have been reported in both schizophrenia (SZ) and bipolar disorder (BD). We applied the Expectancy-Valence (E-V) model to determine whether motivational, cognitive and response selection component processes of IGT performance are differentially affected in SZ and BD. Method Performance on the IGT was assessed in 280 individuals comprising 70 remitted patients with SZ, 70 remitted patients with BD and 140 age-, sex-and IQ-matched healthy individuals. Based on the E-V model, we extracted three parameters, 'attention to gains or loses', 'expectancy learning' and 'response consistency', that respectively reflect motivational, cognitive and response selection influences on IGT performance. Results Both patient groups underperformed in the IGT compared to healthy individuals. However, the source of these deficits was diagnosis specific. Associative learning underlying the representation of expectancies was disrupted in SZ whereas BD was associated with increased incentive salience of gains. These findings were not attributable to non-specific effects of sex, IQ, psychopathology or medication. Conclusions Our results point to dissociable processes underlying abnormal incentive decision making in BD and SZ that could potentially be mapped to different neural circuits
Chaos in Quantum Dots: Dynamical Modulation of Coulomb Blockade Peak Heights
The electrostatic energy of an additional electron on a conducting grain
blocks the flow of current through the grain, an effect known as the Coulomb
blockade. Current can flow only if two charge states of the grain have the same
energy; in this case the conductance has a peak. In a small grain with
quantized electron states, referred to as a quantum dot, the magnitude of the
conductance peak is directly related to the magnitude of the wavefunction near
the contacts to the dot. Since dots are generally irregular in shape, the
dynamics of the electrons is chaotic, and the characteristics of Coulomb
blockade peaks reflects those of wavefunctions in chaotic systems. Previously,
a statistical theory for the peaks was derived by assuming these wavefunctions
to be completely random. Here we show that the specific internal dynamics of
the dot, even though it is chaotic, modulates the peaks: because all systems
have short-time features, chaos is not equivalent to randomness. Semiclassical
results are derived for both chaotic and integrable dots, which are
surprisingly similar, and compared to numerical calculations. We argue that
this modulation, though unappreciated, has already been seen in experiments.Comment: 4 pages, 3 postscript figs included (2 color), uses epsf.st
Active Galactic Nuclei under the scrutiny of CTA
Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer
excellent conditions for efficient particle acceleration in internal and
external shocks, turbulence, and magnetic reconnection events. The jets as well
as particle accelerating regions close to the supermassive black holes
(hereafter SMBH) at the intersection of plasma inflows and outflows, can
produce readily detectable very high energy gamma-ray emission. As of now, more
than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the
present ground-based gamma-ray telescopes, which represents more than one third
of the cosmic sources detected so far in the VHE gamma-ray regime. The future
Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the
VHE range by about one order of magnitude, shedding new light on AGN population
studies, and AGN classification and unification schemes. CTA will be a unique
tool to scrutinize the extreme high-energy tail of accelerated particles in
SMBH environments, to revisit the central engines and their associated
relativistic jets, and to study the particle acceleration and emission
mechanisms, particularly exploring the missing link between accretion physics,
SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an
extremely rewarding observing program which will inform us about the inner
workings and evolution of AGN. Furthermore these AGN are bright beacons of
gamma-rays which will allow us to constrain the extragalactic infrared and
optical backgrounds as well as the intergalactic magnetic field, and will
enable tests of quantum gravity and other "exotic" phenomena.Comment: 28 pages, 23 figure
- …