170 research outputs found

    SOD1, from Bench to Bed: New Role for the Oldest Protein Implicated in ALS

    Get PDF
    In 1993, the first superoxide dismutase 1 (SOD1) mutation in amyotrophic lateral sclerosis (ALS) patients has been described by Rosen et al. successively, the scientific literature focused on the role of SOD1 in the pathogenesis of ALS. While a clear genetic scenario has been presented, heterogeneous data have been formulated regarding transcriptional and post-transcriptional regulation of SOD1 so far. In particular, the dilemma concerns the SOD1 protein expression, in the direction of a loss of function of the wild-type SOD1 or a toxic gain of function of the altered SOD1, both in FALS (mutant-SOD1) and in SALS (misfolded-SOD1). In this chapter, we focus on the evolution of scientific knowledge about SOD1 protein in ALS patients, reviewing in detail the results obtained using peripheral blood cells in this research field. To conclude, we propose a brief summary of the described clinical correlation and discuss the possible SOD1 implication as a biomarker of ALS

    Reversible Holmes Tremor due to Middle Cerebral Artery Giant Aneurysm

    Get PDF
    A 40-year-old man presented with a 6-month history of mild but worsening tremor of variable intensity. The patient had a focal, irregular, rest and action tremor of middle amplitude and low frequency (about 4 Hz), limited to his right arm with oscillatory motion around the elbow. It was present inconsistently at rest, particularly during emotional activation, and enhanced by posture maintenance. It was evoked by various positions and tasks. Particularly, the tremor was present during fine motor skills such as writing, and it was increased by drinking and shaving, showing a minimal intentional component. The patient also reported slight loss in manual dexterity in his right hand

    Pathological Proteins Are Transported by Extracellular Vesicles of Sporadic Amyotrophic Lateral Sclerosis Patients

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset neurodegenerative disease, that affects cortical, bulbar and spinal motor neurons, and it is considered a proteinopathy, in which pathological proteins (SOD1, TDP-43, and FUS) may accumulate and interfere with neuronal functions eventually leading to cell death. These proteins can be released from cells and transported in the body fluids by extracellular vesicles (EVs). EVs are spherical vesicles, which are classified mainly in microvesicles (MVs) and exosomes (EXOs) based on their biogenesis, size and surface markers. In this study we characterized MVs and EXOs isolated from plasma of sporadic ALS patients and healthy controls and determined their number, size and SOD1, TDP-43, and FUS protein composition. No variation was found in the number of EVs between ALS patients and controls. However, the mean size both for MVs and for EXOs resulted increased in ALS patients compared to controls. MVs derived from ALS patients were enriched in SOD1, TDP-43, phospho-TDP-43, and FUS proteins compared to CTRLs. SOD1 was generally more concentrated in EXOs than in MVs, while TDP-43 and FUS protein levels were slightly higher in MVs than in EXOs. We demonstrated that MVs and EXOs size were increased in ALS patients compared to controls and that MVs of ALS patients were enriched with toxic proteins compared to CTRLs. EXOs did not show any protein changes. These data may suggest that MVs can transport toxic proteins and might play a role in prion-like propagation of ALS disease

    Life during COVID-19 lockdown in Italy: the influence of cognitive state on psychosocial, behavioral and lifestyle profiles of older adults.

    Get PDF
    Few studies have examined lockdown effects on the way of living and well-being of older adults stratified by cognitive state. Since cognitive deficits are common in this population, we investigated how cognition influenced their understanding of the pandemic, socio-behavioral responses and lifestyle adaptations during lockdown, and how these factors affected their mood or memory.Telephone-based survey involving 204 older adults ≥65 y/o (median: 82) with previous assessments of cognitive state: 164 normal-old (NOLD), 24 mild-neurocognitive disorder (mild-NCD), 18 mild-moderate dementia. A structured questionnaire was developed to assess psychological and socio-behavioral variables. Logistic regression was used to ascertain their effects on mood and memory.With increasing cognitive deficits, understanding of the pandemic and the ability to follow lockdown policies, adapt to lifestyle changes, and maintain remote interactions decreased. Participants with dementia were more depressed; NOLDs remained physically and mentally active but were more bored and anxious. Sleeping and health problems independently increased the likelihood of depression (OR: 2.29; CI: 1.06-4.93;NOLD and mild-NCD groups showed similar mood-behavioral profiles suggesting better tolerance of lockdown. Those with dementia were unable to adapt and suffered from depression and cognitive complaints. To counteract lockdown effects, physical and mental activities and digital literacy should be encouraged

    Leukocyte Derived Microvesicles as Disease Progression Biomarkers in Slow Progressing Amyotrophic Lateral Sclerosis Patients

    Get PDF
    The lack of biomarkers in Amyotrophic Lateral Sclerosis (ALS) makes it difficult to determine the stage of the disease in patients and, therefore, it delays therapeutic trials. Microvesicles (MVs) are possible biomarkers implicated in physiological and pathological functions, however, their role in ALS remains unclear. We investigated whether plasma derived microvesicles could be overrepresented in a group of 40 patients affected by ALS compared to 28 Alzheimer’s Disease (AD) patients and 36 healthy volunteers. Leukocyte derived MVs (LMVs) compared to endothelial, platelet, erythrocyte derived MVs, were mostly present in ALS patients compared to AD patients and healthy donors. Correlation analysis corrected for the presence of confounding variables (riluzole, age at onset, site of onset, gender) was tested between PRL (Progression Rate at the Last visit) and LMVs, and a statistically significant value was found (Pearson partial correlation r = 0.407, p = 0.006). We also investigated SOD1, TDP-43 intravesicular protein level in LMVs. Misfolded SOD1 was selectively transported by LMVs and its protein level was associated with the percentage of LMVs in slow progressing patients (r = 0.545, p = 0.033). Our preliminary findings suggest that LMVs are upregulated in ALS patients and they can be considered possible markers of disease progression

    Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS

    Get PDF
    Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p
    corecore