114 research outputs found

    Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function.

    Get PDF
    Background Cell-derived microparticles are secreted in response to cell damage or dysfunction. Endothelial and platelet dysfunction are thought to contribute to the development of multiple sclerosis (MS). Our aim here is, first, to compare the presence of microparticles of endothelial and platelet origin in plasma from patients with different clinical forms of MS and with clinically isolated syndrome. Second, to investigate the effect of microparticles on endothelial barrier function. Results Platelet-poor plasma from 95 patients (12 with clinically isolated syndrome, 51 relapsing-remitting, 23 secondary progressive, 9 primary progressive) and 49 healthy controls were analyzed for the presence of platelet-derived and endothelium-derived microparticles by flow cytometry. The plasma concentration of platelet-derived and endothelium-derived microparticles increased in all clinical forms of MS and in clinically isolated syndrome versus controls. The response of endothelial barriers to purified microparticles was measured by electric cell-substrate impedance sensing. Microparticles from relapsing-remitting MS patients induced, at equivalent concentrations, a stronger disruption of endothelial barriers than those from healthy donors or from patients with clinically isolated syndrome. MS microparticles acted synergistically with the inflammatory mediator thrombin to disrupt the endothelial barrier function. Conclusions Plasma microparticles should be considered not only as markers of early stages of MS, but also as pathological factors with the potential to increase endothelial permeability and leukocyte infiltration

    Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids

    Get PDF
    Exosomes are cell-secreted nanovesicles (40–200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.FICYT; Ministerio de Educación; Ministerio de Economía y Competitividad; Gobierno Regional de Asturias; Gobierno Regional de Madri

    Two Alleles of NF-κB in the Sea Anemone Nematostella vectensis Are Widely Dispersed in Nature and Encode Proteins with Distinct Activities

    Get PDF
    BACKGROUND. NF-κB is an evolutionarily conserved transcription factor that controls the expression of genes involved in many key organismal processes, including innate immunity, development, and stress responses. NF-κB proteins contain a highly conserved DNA-binding/dimerization domain called the Rel homology domain. METHODS/PRINCIPAL FINDINGS. We characterized two NF-κB alleles in the sea anemone Nematostella vectensis that differ at nineteen single-nucleotide polymorphisms (SNPs). Ten of these SNPs result in amino acid substitutions, including six within the Rel homology domain. Both alleles are found in natural populations of Nematostella. The relative abundance of the two NF-κB alleles differs between populations, and departures from Hardy-Weinberg equilibrium within populations indicate that the locus may be under selection. The proteins encoded by the two Nv-NF-κB alleles have different molecular properties, in part due to a Cys/Ser polymorphism at residue 67, which resides within the DNA recognition loop. In nearly all previously characterized NF-κB proteins, the analogous residue is fixed for Cys, and conversion of human RHD proteins from Cys to Ser at this site has been shown to increase DNA-binding ability and increase resistance to inhibition by thiol-reactive compounds. However, the naturally-occurring Nematostella variant with Cys at position 67 binds DNA with a higher affinity than the Ser variant. On the other hand, the Ser variant activates transcription in reporter gene assays more effectively, and it is more resistant to inhibition by a thiol-reactive compound. Reciprocal Cys<->Ser mutations at residue 67 of the native Nv-NF-κB proteins affect DNA binding as in human NF-κB proteins, e.g., a Cys->Ser mutation increases DNA binding of the native Cys variant. CONCLUSIONS/SIGNIFICANCE. These results are the first demonstration of a naturally occurring and functionally significant polymorphism in NF-κB in any species. The functional differences between these alleles and their uneven distribution in the wild suggest that different genotypes could be favored in different environments, perhaps environments that vary in their levels of peroxides or thiol-reactive compounds.National Institutes of Health (CA047763); National Science Foundation (FP-91656101-0); Environmental Protection Agency (F5E11155); Conservation International Marine Management Area Science Program; Boston University (SPRInG grant); Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution; The Beacon Institute for Rivers and Estuaries; the J Seward Johnson Fund; Boston University (5 P42 ES07381

    Protein lipoxidation:detection strategies and challenges

    Get PDF
    Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets

    Inhibition of Plasmodium falciparum Field Isolates-Mediated Endothelial Cell Apoptosis by Fasudil: Therapeutic Implications for Severe Malaria

    Get PDF
    Plasmodium falciparum infection can abruptly progress to severe malaria, a life-threatening complication resulting from sequestration of parasitized red blood cells (PRBC) in the microvasculature of various organs such as the brain and lungs. PRBC adhesion can induce endothelial cell (EC) activation and apoptosis, thereby disrupting the blood-brain barrier. Moreover, hemozoin, the malarial pigment, induces the erythroid precursor apoptosis. Despite the current efficiency of antimalarial drugs in killing parasites, severe malaria still causes up to one million deaths every year. A new strategy targeting both parasite elimination and EC protection is urgently needed in the field. Recently, a rho-kinase inhibitior Fasudil, a drug already in clinical use in humans for cardio- and neuro-vascular diseases, was successfully tested on laboratory strains of P. falciparum to protect and to reverse damages of the endothelium. We therefore assessed herein whether Fasudil would have a similar efficiency on P. falciparum taken directly from malaria patients using contact and non-contact experiments. Seven (23.3%) of 30 PRBC preparations from different patients were apoptogenic, four (13.3%) acting by cytoadherence and three (10%) via soluble factors. None of the apoptogenic PRBC preparations used both mechanisms indicating a possible mutual exclusion of signal transduction ligand. Three PRBC preparations (42.9%) induced EC apoptosis by cytoadherence after 4 h of coculture (“rapid transducers”), and four (57.1%) after a minimum of 24 h (“slow transducers”). The intensity of apoptosis increased with time. Interestingly, Fasudil inhibited EC apoptosis mediated both by cell-cell contact and by soluble factors but did not affect PRBC cytoadherence. Fasudil was found to be able to prevent endothelium apoptosis from all the P. falciparum isolates tested. Our data provide evidence of the strong anti-apoptogenic effect of Fasudil and show that endothelial cell-P. falciparum interactions are more complicated than previously thought. These findings may warrant clinical trials of Fasudil in severe malaria management

    Sprouty2 and Spred1-2 Proteins Inhibit the Activation of the ERK Pathway Elicited by Cyclopentenone Prostanoids

    Get PDF
    Sprouty and Spred proteins have been widely implicated in the negative regulation of the fibroblast growth factor receptor-extracellular regulated kinase (ERK) pathway. In considering the functional role of these proteins, we explored their effects on ERK activation induced by cyclopentenone prostanoids, which bind to and activate Ras proteins. We therefore found that ectopic overexpression in HeLa cells of human Sprouty2, or human Spred1 or 2, inhibits ERK1/2 and Elk-1 activation triggered by the cyclopentenone prostanoids PGA1 and 15d-PGJ2. Furthermore, we found that in HT cells that do not express Sprouty2 due to hypermethylation of its gene-promoter, PGA1-provoked ERK activation was more intense and sustained compared to other hematopoietic cell lines with unaltered Sprouty2 expression. Cyclopentenone prostanoids did not induce Sprouty2 tyrosine phosphorylation, in agreement with its incapability to activate tyrosine-kinase receptors. However, Sprouty2 Y55F, which acts as a defective mutant upon tyrosine-kinase receptor stimulation, did not inhibit cyclopentenone prostanoids-elicited ERK pathway activation. In addition, Sprouty2 did not affect the Ras-GTP levels promoted by cyclopentenone prostanoids. These results unveil both common and differential features in the activation of Ras-dependent pathways by cyclopentenone prostanoids and growth factors. Moreover, they provide the first evidence that Sprouty and Spred proteins are negative regulators of the ERK/Elk-1 pathway activation induced not only by growth-factors, but also by reactive lipidic mediators

    Efecto de agentes inductores de la proliferación peroxisomal sobre la respuesta celular a estímulos inflamatorios: regulación de la óxido nítrico sintasa inducible y del factor de transcripción NF-κB

    No full text
    102 p.-55 fig.-1 tab.[EN] The peroxisome proliferators such as hypolipidemic agents and antidiabetic compounds, are characterized by their ability to bind a family of nuclear receptors, the PPAR (peroxisome proliferator activated receptors). These drugs have been reported to exert beneficial effects on the cardiovascular system which may be related to their anti-inflammatory actions. It has been described that PPAR agonists inhibit inducible nitric oxide synthase (iNOS) expression in several systems. It has been proposed that this inhibition is due to their negative effect on NF-κB transcriptional activity. In the present study, we have observed that certain agonists of PPAR amplify cytokine-elicited iNOS induction in mesangial cells through transcriptional mechanisms while inhibiting NF-κB activity. NO may contribute to the anti-12,14 inflammatory effects of these agents. In the case of 15-deoxy-∆ -prostaglandin J2, a prostaglandin generated by the cell after the induction of cyclooxygenase-2 (COX-2), we have showed that it covalently modifies the p50 subunit of NF-κB by a Michael´s addition to the cysteine 62. This modification takes place in intact cells as demonstrated by using a biotinylated prostaglandin. This mechanism could contribute to the feed-back regulation of the inflammatory process.[ES] Los agentes inductores de la proliferación peroxisomal, entre los que se encuentran agentes hipolipemiantes y antidiabéticos orales, se caracterizan por su capacidad de activar a una subfamilia de receptores nucleares, los PPAR. Estos fármacos presentan efectos beneficiosos en el tratamiento de los procesos aterogénicos que se han relacionado con sus acciones anti-inflamatorias. Se ha descrito que los agonistas de PPAR inhiben la expresión de la forma inducible de la óxido nítrico sintasa (NOSi) en distintos modelos experimentales y se ha propuesto que dicha inhibición es debida, al menos en parte, a la inhibición de la actividad transcripcional de NF-κB. Nosotros hemos observado que ciertos agonistas de PPAR potencian la expresión de la NOSi en células mesangiales activadas con estímulos inflamatorios, con la participación de mecanismos de regulación transcripcional. El NO producido podría contribuir a los efectos anti-inflamatorios de estos agentes. Además todos los agonistas empleados inhibieron la vía de activación de NF-κB por 12,14 distintos mecanismos. En el caso de la 15-desoxi-∆ -prostaglandina J2 –prostaglandina que se produce en las células tras la inducción de la ciclooxigenasa-2 (COX-2)-, hemos descrito la modificación covalente de la subunidad p50 de NF-κB, a través de una adición de Michael a la cisteína en posición 62. Esta modificación tiene lugar en células intactas, como hemos podido demostrar mediante el empleo de una prostaglandina biotinilada. Por ello la modificación postraduccional de proteínas por “prostanilación” podría constituir un mecanismo de autoregulación de los procesos inflamatorios.Peer reviewe
    corecore