127 research outputs found

    Solar energetic electron events measured by MESSENGER and Solar Orbiter. Peak intensity and energy spectrum radial dependences: statistical analysis

    Get PDF
    Context/Aims: We present a list of 61 solar energetic electron (SEE) events measured by the MESSENGER mission and the radial dependences of the electron peak intensity and the peak-intensity energy spectrum. The analysis comprises the period from 2010 to 2015, when MESSENGER heliocentric distance varied between 0.31 and 0.47 au. We also show the radial dependencies for a shorter list of 12 SEE events measured in February and March 2022 by spacecraft near 1 au and by Solar Orbiter around its first close perihelion at 0.32 au. Results: Due to the elevated background intensity level of the particle instrument on board MESSENGER, the SEE events measured by this mission are necessarily large and intense; most of them accompanied by a CME-driven shock, being widespread in heliolongitude, and displaying relativistic (\sim1 MeV) electron intensity enhancements. The two main conclusions derived from the analysis of the large SEE events measured by MESSENGER, which are generally supported by Solar Orbiter's data results, are: (1) There is a wide variability in the radial dependence of the electron peak intensity between \sim0.3 au and \sim1 au, but the peak intensities of the energetic electrons decrease with radial distance from the Sun in 27 out of 28 events. On average and within the uncertainties, we find a radial dependence consistent with R3R^{-3}. (2) The electron spectral index found in the energy range around 200 keV (δ\delta200) of the backward-scattered population near 0.3 au measured by MESSENGER is harder in 19 out of 20 (15 out of 18) events by a median factor of \sim20% (\sim10%) when comparing to the anti-sunward propagating beam (backward-scattered population) near 1 au.Comment: 20 pages, 13 figure

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems

    Comunicación entre el personal sanitario y el paciente afásico

    Get PDF
    Comunicación oral presentada en la Segunda Conferencia Internacional de Comunicación en Salud, celebrada el 23 de octubre de 2015 en la Universidad Carlos III de MadridIntroducción: la afasia es la pérdida de capacidad de expresión debida a una lesión temporal o crónica de los centros temporales. Se calcula que en España hay unos 300.000 casos. Las limitaciones varían dependiendo del área dañada, viéndose afectada su capacidad para hablar, leer, escribir o comprender. Objetivos: Conocer los principales errores que comete el personal sanitario al comunicarse con el paciente afásico. Mostrar alternativas de comunicación entre paciente y personal sanitario. Fomentar la comunicación interprofesional. Metodología: se realiza una búsqueda bibliográfica en las bases de datos Dialnet, Lilacs, Medline y Cuiden Plus con las palabras “comunicación” “paciente” “afasia” para artículos a texto completo publicados en los últimos diez años. Resultados: la búsqueda ofreció resultados, que después proceso de selección se redujeron a cuatro artículos. Resultados: la bibliografía sobre la temática del estudio es escasa, la mayoría de los estudios se centran en el ámbito logopédico. Los profesionales que a diario se relacionan conel paciente afásico, carecen de formación en habilidades comunicativas, consecuencia de esro es que nos enfrentamos a una comunicación personal-paciente ineficaz reflejada en frustración en ambos. Se evidencia la necesidad de futuras líneas de investigación sobre este tema, con el fin, de mejorar la calidad de vida del enfermo afásico; así como fomentar el dialogo entre logopedas y el resto de profesionales sanitarios

    Unusually long path length for a nearly scatter-free solar particle event observed by Solar Orbiter at 0.43 au

    Get PDF
    Context: After their acceleration and release at the Sun, solar energetic particles (SEPs) are injected into the interplanetary medium and are bound to the interplanetary magnetic field (IMF) by the Lorentz force. The expansion of the IMF close to the Sun focuses the particle pitch-angle distribution, and scattering counteracts this focusing. Solar Orbiter observed an unusual solar particle event on 9 April 2022 when it was at 0.43 astronomical units (au) from the Sun. // Aims: We show that the inferred IMF along which the SEPs traveled was about three times longer than the nominal length of the Parker spiral and provide an explanation for this apparently long path. // Methods: We used velocity dispersion analysis (VDA) information to infer the spiral length along which the electrons and ions traveled and infer their solar release times and arrival direction. // Results: The path length inferred from VDA is approximately three times longer than the nominal Parker spiral. Nevertheless, the pitch-angle distribution of the particles of this event is highly anisotropic, and the electrons and ions appear to be streaming along the same IMF structures. The angular width of the streaming population is estimated to be approximately 30 degrees. The highly anisotropic ion beam was observed for more than 12 h. This may be due to the low level of fluctuations in the IMF, which in turn is very probably due to this event being inside an interplanetary coronal mass ejection The slow and small rotation in the IMF suggests a flux-rope structure. Small flux dropouts are associated with very small changes in pitch angle, which may be explained by different flux tubes connecting to different locations in the flare region. // Conclusions: The unusually long path length along which the electrons and ions have propagated virtually scatter-free together with the short-term flux dropouts offer excellent opportunities to study the transport of SEPs within interplanetary structures. The 9 April 2022 solar particle event offers an especially rich number of unique observations that can be used to limit SEP transport models

    Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats.</p> <p>Methods</p> <p>Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied.</p> <p>Results</p> <p>The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1.</p> <p>Conclusion</p> <p>We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation.</p

    Sprouty2 and Spred1-2 Proteins Inhibit the Activation of the ERK Pathway Elicited by Cyclopentenone Prostanoids

    Get PDF
    Sprouty and Spred proteins have been widely implicated in the negative regulation of the fibroblast growth factor receptor-extracellular regulated kinase (ERK) pathway. In considering the functional role of these proteins, we explored their effects on ERK activation induced by cyclopentenone prostanoids, which bind to and activate Ras proteins. We therefore found that ectopic overexpression in HeLa cells of human Sprouty2, or human Spred1 or 2, inhibits ERK1/2 and Elk-1 activation triggered by the cyclopentenone prostanoids PGA1 and 15d-PGJ2. Furthermore, we found that in HT cells that do not express Sprouty2 due to hypermethylation of its gene-promoter, PGA1-provoked ERK activation was more intense and sustained compared to other hematopoietic cell lines with unaltered Sprouty2 expression. Cyclopentenone prostanoids did not induce Sprouty2 tyrosine phosphorylation, in agreement with its incapability to activate tyrosine-kinase receptors. However, Sprouty2 Y55F, which acts as a defective mutant upon tyrosine-kinase receptor stimulation, did not inhibit cyclopentenone prostanoids-elicited ERK pathway activation. In addition, Sprouty2 did not affect the Ras-GTP levels promoted by cyclopentenone prostanoids. These results unveil both common and differential features in the activation of Ras-dependent pathways by cyclopentenone prostanoids and growth factors. Moreover, they provide the first evidence that Sprouty and Spred proteins are negative regulators of the ERK/Elk-1 pathway activation induced not only by growth-factors, but also by reactive lipidic mediators

    Coordination of the in situ payload of Solar Orbiter

    Get PDF
    Solar Orbiter’s in situ coordination working group met frequently during the development of the mission with the goal of ensuring that its in situ payload has the necessary level of coordination to maximise science return. Here we present the results of that work, namely how the design of each of the in situ instruments (EPD, MAG, RPW, SWA) was guided by the need for coordination, the importance of time synchronisation, and how science operations will be conducted in a coordinated way. We discuss the mechanisms by which instrument sampling schemes are aligned such that complementary measurements will be made simultaneously by different instruments, and how burst modes are scheduled to allow a maximum overlap of burst intervals between the four instruments (telemetry constraints mean different instruments can spend different amounts of time in burst mode). We also explain how onboard autonomy, inter-instrument communication, and selective data downlink will be used to maximise the number of transient events that will be studied using high-resolution modes of all the instruments. Finally, we briefly address coordination between Solar Orbiter’s in situ payload and other missions
    corecore