37 research outputs found

    A closer look at chaotic advection in the stratosphere: part II: statistical diagnostics

    Get PDF
    Statistical diagnostics of mixing and transport are computed for a numerical model of forced shallow-water flow on the sphere and a middle-atmosphere general circulation model. In particular, particle dispersion statistics, transport fluxes, Liapunov exponents (probability density functions and ensemble averages), and tracer concentration statistics are considered. It is shown that the behavior of the diagnostics is in accord with that of kinematic chaotic advection models so long as stochasticity is sufficiently weak. Comparisons with random-strain theory are made

    Lipidomic Analysis of Extracellular Vesicles from the Pathogenic Phase of Paracoccidioides brasiliensis

    Get PDF
    Background: Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery.Methodology/Principal Findings: Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two representative isolates, Pb3 and Pb18, which have distinct virulence profiles and phylogenetic background. Vesicle lipids were fractionated into different classes and analyzed by either electrospray ionization- or gas chromatography-mass spectrometry. We found two species of monohexosylceramide and 33 phospholipid species, including phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Among the phospholipid-bound fatty acids in extracellular vesicles, C181 predominated in Pb3, whereas C18:2 prevailed in Pb18. the prevalent sterol in Pb3 and Pb18 vesicles was brassicasterol, followed by ergosterol and lanosterol. Inter-isolate differences in sterol composition were observed, and also between extracellular vesicles and whole cells.Conclusions/Significance: the extensive lipidomic analysis of extracellular vesicles from two P. brasiliensis isolates will help to understand the composition of these fungal components/organelles and will hopefully be useful to study their biogenesis and role in host-pathogen interactions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)National Institutes of Health (NIH)Universidade Federal de São Paulo, UNIFESP, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniv Texas El Paso, Dept Biol Sci, Border Biomed Res Ctr, El Paso, TX 79968 USAUniversidade Federal de São Paulo, UNIFESP, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilFAPESP: 06/05095-6FAPESP: 07/04757-8FAPESP: 07/59768-4CNPq: 301666/2010-5National Institutes of Health (NIH): 5G12RR008124-16A1National Institutes of Health (NIH): 5G12RR008124-16A1S1National Institutes of Health (NIH): G12MD007592Web of Scienc

    Vascular Normalization in Cerebral Angiogenesis: Friend or Foe?

    No full text
    Current antiangiogenic therapies have led to the observation that such agents can lead to improved tumor vessel structure and function termed “vascular normalization” which reduces tumor burden. However, vessel normalization is a transient process, and patients often develop resistance/poor response to anti-vascular strategies that remains an important clinical challenge. Therefore, increasing effort has been made to better understand the cellular and molecular mechanisms of vascular normalization and its contribution to immunomodulation. Herein, we summarize the recent effort to better understand the cellular and molecular mechanisms of vascular normalization with a focus on preclinical genetic models. These studies remain important directions for a mechanistic understanding of the complexities of the maintenance of BBB integrity and the impact of its breakdown on tumor dissemination and pharmaco-distribution of therapeutics

    Gene loss in the fungal canola pathogen Leptosphaeria maculans

    Get PDF
    Recent comparisons of the increasing number of genome sequences have revealed that variation in gene content is considerably more prevalent than previously thought. This variation is likely to have a pronounced effect on phenotypic diversity and represents a crucial target for the assessment of genomic diversity. Leptosphaeria maculans, a causative agent of phoma stem canker, is the most devastating fungal pathogen of Brassica napus (oilseed rape/canola). A number of L. maculans genes are known to be present in some isolates but lost in the others. We analyse gene content variation within three L. maculans isolates using a hybrid mapping and genome assembly approach and identify genes which are present in one of the isolates but missing in the others. In total, 57 genes are shown to be missing in at least one isolate. The genes encode proteins involved in a range of processes including oxidative processes, DNA maintenance, cell signalling and sexual reproduction. The results demonstrate the effectiveness of the method and provide new insight into genomic diversity in L. maculans
    corecore