12 research outputs found

    MICA-129 dimorphism and soluble MICA are associated with the progression of multiple myeloma

    Get PDF
    Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype

    Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Get PDF
    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1

    SAR Studies Leading to the Identification of a Novel Series of Metallo-β-lactamase Inhibitors for the Treatment of Carbapenem-Resistant Enterobacteriaceae Infections That Display Efficacy in an Animal Infection Model

    Get PDF
    The clinical effectiveness of carbapenem antibiotics such as meropenem is becoming increasingly compromised by the spread of both metallo-β-lactamase (MBL) and serine-β-lactamase (SBL) enzymes on mobile genetic elements, stimulating research to find new β-lactamase inhibitors to be used in conjunction with carbapenems and other β-lactam antibiotics. Herein, we describe our initial exploration of a novel chemical series of metallo-β-lactamase inhibitors, from concept to efficacy, in a survival model using an advanced tool compound (ANT431) in conjunction with meropenem

    Soluble ligands for the NKG2D receptor are released during HIV-1 infection and impair NKG2D expression and cytotoxicity of NK cells

    No full text
    In humans, the interaction of the natural killer group 2 member D (NKG2D)-activating receptor on natural killer (NK) and CD8+ T cells with its major histocompatibility complex class I-related chain (MIC) and UL16 binding protein (ULBP) ligands (NKG2DLs) promotes recognition and elimination of stressed cells, such as tumor or infected cells. Here, we investigated the capacity of HIV-1 to modulate NKG2DL expression and escape NGK2D-mediated immunosurveillance. In CD4+ T lymphocytes, both cell surface expression and release of MICA, MICB, and ULBP2 were up-regulated >2-fold by HIV-1 infection. In HIV-infected CD4+ T lymphocytes or Jurkat T-cell lines, increased shedding of soluble NKG2DLs (sNKG2DLs) was impaired by a matrix metalloproteinase inhibitor (MMPI). Moreover, naive HIV+ patients displayed increased plasma sMICA and sULBP2 levels and reduced NKG2D expression on NK and CD8+ T cells compared to patients receiving highly active antiretroviral therapy (HAART) or healthy donors. In individual patients, HAART uptake resulted in the drop of sNKG2DL and recovery of NKG2D expression. Finally, sNKG2DLs in patients' plasma down-regulated NKG2D on NK and CD8 + T cells and impaired NKG2D-mediated cytotoxicity of NK cells. Thus, NKG2D detuning by sNKG2DLs may promote HIV-1 immune evasion and compromise host resistance to opportunistic infections, but HAART and MMPI have the potential to avoid such immune dysfunction. © FASEB.Abstract In humans, the interaction of the natural killer group 2 member D (NKG2D)-activating receptor on natural killer (NK) and CD8(+) T cells with its major histocompatibility complex class I-related chain (MIC) and UL16 binding protein (ULBP) ligands (NKG2DLs) promotes recognition and elimination of stressed cells, such as tumor or infected cells. Here, we investigated the capacity of HIV-1 to modulate NKG2DL expression and escape NGK2D-mediated immunosurveillance. In CD4(+) T lymphocytes, both cell surface expression and release of MICA, MICB, and ULBP2 were up-regulated >2-fold by HIV-1 infection. In HIV-infected CD4(+) T lymphocytes or Jurkat T-cell lines, increased shedding of soluble NKG2DLs (sNKG2DLs) was impaired by a matrix metalloproteinase inhibitor (MMPI). Moreover, naive HIV(+) patients displayed increased plasma sMICA and sULBP2 levels and reduced NKG2D expression on NK and CD8(+) T cells compared to patients receiving highly active antiretroviral therapy (HAART) or healthy donors. In individual patients, HAART uptake resulted in the drop of sNKG2DL and recovery of NKG2D expression. Finally, sNKG2DLs in patients' plasma down-regulated NKG2D on NK and CD8(+) T cells and impaired NKG2D-mediated cytotoxicity of NK cells. Thus, NKG2D detuning by sNKG2DLs may promote HIV-1 immune evasion and compromise host resistance to opportunistic infections, but HAART and MMPI have the potential to avoid such immune dysfunction

    Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells

    No full text
    Genotoxic stress can promote antitumor NK cell responses by upregulating the surface expression of activating ligands on cancer cells. Moreover, a number of studies suggested a role for soluble NK group 2D ligands in the impairment of NK cell tumor recognition and killing. We investigated whether genotoxic stress could promote the release of NK group 2D ligands (MHC class I-related chain [MIC]A and MICB), as well as the molecular mechanisms underlying this event in human multiple myeloma (MM) cells. Our results show that genotoxic agents used in the therapy of MM (i.e., doxorubicin and melphalan) selectively affect the shedding of MIC molecules that are sensitive to proteolytic cleavage, whereas the release of the short MICA*008 allele, which is frequent in the white population, is not perturbed. In addition, we found that a disintegrin and metalloproteinase 10 expression is upregulated upon chemotherapeutic treatment both in patient-derived CD138(+)/CD38(+) plasma cells and in several MM cell lines, and we demonstrate a crucial role for this sheddase in the proteolytic cleavage of MIC by means of silencing and pharmacological inhibition. Interestingly, the drug-induced upregulation of a disintegrin and metalloproteinase 10 on MM cells is associated with a senescent phenotype and requires generation of reactive oxygen species. Moreover, the combined use of chemotherapeutic drugs and metalloproteinase inhibitors enhances NK cell-mediated recognition of MM cells, preserving MIC molecules on the cell surface and suggesting that targeting of metalloproteinases in conjunction with chemotherapy could be exploited for NK cell-based immunotherapeutic approaches, thus contributing to avoid the escape of malignant cells from stress-elicited immune responses

    1,2,4-Triazole-3-Thione Analogues with a 2-Ethylbenzoic Acid at Position 4 as VIM-type Metallo-β-Lactamase Inhibitors

    Full text link
    peer reviewedMetallo-β-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino com pounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, these compounds were unable to restore antibiotic suscepti bility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiological activity, we synthesized and characterized compounds where the hydrazone-like bond of the Schiff base analogues was replaced by a stable ethyl link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but showed a significantly better activity on VIM-type enzymes, with Ki values in the μM to sub-μM range. The resolution of the crystallo graphic structure of VIM-2 in complex with one of the best inhibitors yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the β-lactam susceptibility of VIM-type-producing E. coli labo ratory strains and also of K. pneumoniae clinical isolates. In addition, selected compounds were found to be devoid of toxicity toward human cancer cells at high concentration, thus showing promising safety

    1,2,4-Triazole-3-thione analogues with an arylakyl group at position 4 as metallo-β-lactamase inhibitors

    No full text
    International audienceMetallo-β-lactamases (MBLs) represent an increasingly serious threat to public health because of their increased prevalence worldwide in relevant opportunistic Gram-negative pathogens. MBLs efficiently inactivate widely used and most valuable β-lactam antibiotics, such as oxyiminocephalosporins (ceftriaxone, ceftazidime) and the last-resort carbapenems. To date, no MBL inhibitor has been approved for therapeutic applications. We are developing inhibitors characterized by a 1,2,4-triazole-3-thione scaffold as an original zinc ligand and few promising series were already reported. Here, we present the synthesis and evaluation of a new series of compounds characterized by the presence of an arylalkyl substituent at position 4 of the triazole ring. The alkyl link was mainly an ethylene, but a few compounds without alkyl or with an alkyl group of various lengths up to a butyl chain were also synthesized. Some compounds in both sub-series were micromolar to submicromolar inhibitors of tested VIM-type MBLs. A few of them were broad-spectrum inhibitors, as they showed significant inhibitory activity on NDM-1 and, to a lesser extent, IMP-1. Among these, several inhibitors were able to significantly reduce the meropenem MIC on VIM-1- and VIM-4- producing clinical isolates by up to 16-fold. In addition, ACE inhibition was absent or moderate and one promising compound did not show toxicity toward HeLa cells at concentrations up to 250 μM. This series represents a promising basis for further exploration. Finally, molecular modelling of representative compounds in complex with VIM-2 was performed to study their binding mode
    corecore