325 research outputs found

    Quantifying uncertainty due to fission-fusion dynamics as a component of social complexity.

    Get PDF
    Groups of animals (including humans) may show flexible grouping patterns, in which temporary aggregations or subgroups come together and split, changing composition over short temporal scales, (i.e. fission and fusion). A high degree of fission-fusion dynamics may constrain the regulation of social relationships, introducing uncertainty in interactions between group members. Here we use Shannon's entropy to quantify the predictability of subgroup composition for three species known to differ in the way their subgroups come together and split over time: spider monkeys (Ateles geoffroyi), chimpanzees (Pan troglodytes) and geladas (Theropithecus gelada). We formulate a random expectation of entropy that considers subgroup size variation and sample size, against which the observed entropy in subgroup composition can be compared. Using the theory of set partitioning, we also develop a method to estimate the number of subgroups that the group is likely to be divided into, based on the composition and size of single focal subgroups. Our results indicate that Shannon's entropy and the estimated number of subgroups present at a given time provide quantitative metrics of uncertainty in the social environment (within which social relationships must be regulated) for groups with different degrees of fission-fusion dynamics. These metrics also represent an indirect quantification of the cognitive challenges posed by socially dynamic environments. Overall, our novel methodological approach provides new insight for understanding the evolution of social complexity and the mechanisms to cope with the uncertainty that results from fission-fusion dynamics

    African elephants can use human pointing cues to find hidden food

    Get PDF
    We thank the School of Psychology and Neuroscience of the University of St Andrews for providing the funding for this research.How animals gain information from attending to the behavior of others has been widely studied, driven partly by the importance of referential pointing in human cognitive development [1, 2, 3 and 4], but species differences in reading human social cues remain unexplained. One explanation is that this capacity evolved during domestication [5 and 6], but it may be that only those animals able to interpret human-like social cues were successfully domesticated. Elephants are a critical taxon for this question: despite their longstanding use by humans, they have never been domesticated [7]. Here we show that a group of 11 captive African elephants, seven of them significantly as individuals, could interpret human pointing to find hidden food. We suggest that success was not due to prior training or extensive learning opportunities. Elephants successfully interpreted pointing when the experimenter’s proximity to the hiding place was varied and when the ostensive pointing gesture was visually subtle, suggesting that they understood the experimenter’s communicative intent. The elephant’s native ability in interpreting social cues may have contributed to its long history of effective use by man.PostprintPeer reviewe

    Able-bodied wild chimpanzees imitate a motor procedure used by a disabled individual to overcome handicap

    Get PDF
    Fieldwork of CH was generously supported by grants from the Wenner-Gren Foundation (http://wennergren.org) and the Russell Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Chimpanzee culture has generated intense recent interest, fueled by the technical complexity of chimpanzee tool-using traditions; yet it is seriously doubted whether chimpanzees are able to learn motor procedures by imitation under natural conditions. Here we take advantage of an unusual chimpanzee population as a 'natural experiment' to identify evidence for imitative learning of this kind in wild chimpanzees. The Sonso chimpanzee community has suffered from high levels of snare injury and now has several manually disabled members. Adult male Tinka, with near-total paralysis of both hands, compensates inability to scratch his back manually by employing a distinctive technique of holding a growing liana taut while making side-to-side body movements against it. We found that seven able-bodied young chimpanzees also used this 'liana-scratch' technique, although they had no need to. The distribution of the liana-scratch technique was statistically associated with individuals' range overlap with Tinka and the extent of time they spent in parties with him, confirming that the technique is acquired by social learning. The motivation for able-bodied chimpanzees copying his variant is unknown, but the fact that they do is evidence that the imitative learning of motor procedures from others is a natural trait of wild chimpanzees.Publisher PDFPeer reviewe

    Chimpanzees demonstrate individual differences in social information use

    Get PDF
    Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant’s performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score—‘SIS’). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15–24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning

    Visible spatial contiguity of social information and reward affects social learning in brown capuchins (<i>Sapajus apella</i>) and children (<i>Homo sapiens</i>)

    Get PDF
    Animal social learning is typically studied experimentally by the presentation of artificial foraging tasks. Although productive, results are often variable even for the same species. We present and test the hypothesis that one cause of variation is that spatial distance between rewards and the means of reward release causes conflicts for participants’ attentional focus. We investigated whether spatial contiguity between a visible reward and the means of release would affect behavioral responses that evidence social learning, testing 21 brown capuchins (Sapajus apella), a much studied species with variant evidence for social learning, and 180 two- to four-year old human children (Homo sapiens), a benchmark species known for a strong social learning disposition. Participants were presented with a novel transparent apparatus where a reward was either proximal or distal to a demonstrated means of releasing it. A distal reward location decreased attention towards the location of the demonstration and impaired subsequent success in gaining rewards. Generally, the capuchins produced the alternative method to that demonstrated whereas children copied the method demonstrated, although a distal reward location reduced copying in younger children. We conclude that some design features in common social learning tasks may significantly degrade the evidence for social learning. We have demonstrated this for two different primates but suggest that it is a significant factor to control for in social learning research across all taxa

    Elephant cognition in primate perspective

    Get PDF
    On many of the staple measures of comparative psychology, elephants show no obvious differences from other mammals, such as primates: discrimination learning, memory, spontaneous tool use, etc. However, a range of more naturalistic measures have recently suggested that elephant cognition may be rather different. Wild elephants sub-categorize humans into groups, independently making this classification on the basis of scent or colour. In number discrimination, elephants show no effects of absolute magnitude or relative size disparity in making number judgements. In the social realm, elephants show empathy into the problems faced by others, and give hints of special abilities in cooperation, vocal imitation and perhaps teaching. Field data suggest that the elephant’s vaunted reputation for memory may have a factual basis, in two ways. Elephants’ ability to remember large-scale space over long periods suggests good cognitive mapping skills. Elephants’ skill in keeping track of the current locations of many family members implies that working memory may be unusually developed, consistent with the laboratory finding that their quantity judgements do not show the usual magnitude effects.Publisher PDFPeer reviewe

    C4 Photosynthesis: Convergence upon Convergence upon


    Get PDF
    C4 photosynthesis has evolved independently numerous times in plants. New work suggests that these multiple origins are the result of recurring selection on a few amino acid positions in the key enzyme phosphoenolpyruvate carboxylase

    Social Cognition: Imitation, Imitation, Imitation

    Get PDF
    Monkeys recognize when they are being imitated, but they seem unable to learn by imitation. These facts make sense if imitation is seen as two different capacities: social mirroring, when actions are matched and have social benefits; and learning by copying, when new behavioural routines are acquired by observation

    Why are animals cognitive?

    Get PDF
    The study of animal behaviour has revealed many intricate ways in which individuals deal adaptively with their world, some of which raise controversial issues of interpretation. Scrub jays, for instance, adjust their food-hiding according to the likely competition from other jays. If a competitor has seen them cache food, and they have themselves had the experience of pilfering others ’ caches, they re-cache in private [1]. If privacy is denied them, they prefer t
    • 

    corecore