237 research outputs found

    Towards a feasible and scalable production of bio-xerogels

    Get PDF
    © 2015 Elsevier Inc. Hypothesis: The synthesis process of carbon xerogels is limited, mainly due to two drawbacks that prevent their introduction onto the market: (i) the long time required for producing the material and (ii) the reagents used for the synthesis, which are costly and harmful to the environment. Microwave radiation is expected to produce a reduction in time of more than 90%, while the use of tannin instead of resorcinol will probably result in a cost-effective carbonaceous material. Experiments: Resorcinol-tannin-formaldehyde xerogels containing different amounts of tannin, either with or without a surfactant (sodium dodecyl sulphate), were synthesized by means of two different heating methods: conventional and microwave heating. The effects of the surfactant, the heating method and the addition of tannin upon the porous structure and the chemical composition of the final materials were evaluated. Findings: It was found that the addition of surfactant is essential for obtaining highly porous xerogels when using tannins. The heating method also plays an important role, as conventionally synthesized samples display a greater volume of large pores. However, tannins are less sensitive to microwave radiation and their use results in tannin-formaldehyde xerogels that have a porous structure and chemical composition similar to those of resorcinol-formaldehyde xerogels.Financial support from the Ministerio de Economía y Competitividad of Spain MINECO (under Projects MAT2011-23733, IPT-2012-0689-420000 and CTQ2013-49433-EXP) is greatly acknowledged. NRR is also grateful to MINECO for her predoctoral research grant. The French authors also gratefully acknowledge the financial support of the CPER 2007–2013 “Structuration du Pôle de Compétitivité Fibres Grand’Est” (Competitiveness Fibre Cluster), through local (Conseil Général des Vosges), regional (Région Lorraine), national (DRRT and FNADT) and European (FEDER) funds.Peer Reviewe

    Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation

    Get PDF
    The present study aims at evaluating the suitability of producing activated carbons (ACs) derived from wheat straw by a one-step synthesis approach, as an alternative to more conventional two steps production processes (i.e., pyrolysis and subsequent activation). The performance of the produced ACs, in one or two steps, as sustainable and selective CO2 adsorbents for CH4/CO2 separation is compared. In addition, the influence of pyrolysis conditions on the properties of the resulting two-step ACs is carefully analyzed. We show that the biochar-based precursors of ACs presenting the best textural properties were obtained under mild conditions of maximum temperature and absolute pressure during pyrolysis. The one-step ACs were fully comparable —in terms of textural properties as well as CO2 uptake and selectivity— to those produced by the more conventional two-step synthesis process. In addition, results obtained from breakthrough curve simulations highlight that the best AC in terms of CH4 recovery under dynamic conditions was produced by a one-step activation. Therefore, the one-step process appears to be as an attractive route for the production of engineered carbon materials, which can lead to significant cost savings in large-scale production systems

    Anisotropic thermally activated diffusion in percolation systems

    Full text link
    We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transition rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-dependent diffusion coefficients we calculate a characteristic frequency ωc1/tc\omega_{c}\sim 1/t_{c}, related to the time tct_c needed to overcome a characteristic barrier. We find that ωc\omega_c follows an Arrhenius behavior with different activation energies in each direction.Comment: 5 pages, 4 figure

    Chemical modification of tannin/furanic rigid foams by isocyanates and polyurethanes

    Get PDF
    Tannin/furanic rigid foams were modifi ed by either polymeric 4,4’ diphenylmethane diisocyanate (pMDI) or a one-component polyurethane still presenting reactive isocyanate groups (PUR). Several diff erent sequences of mixing the isocyanate and polyurethane with the chemicals used to prepare tannin-based foams were tested. Scanning electron microscopy (SEM) showed that addition of either pMDI or PUR yielded a more ordered microstructure of the foam and a larger cell size. Series of two diff erent cell sizes were noticed: those obtained by the evaporation of the blowing agent used for classical tannin-based foams and those caused by the formation of CO2 issued by the reaction of the isocyanate groups with water. Th e cell size, density, thermal conductivity and mechanical property of tannin/furanic foams were controlled by changing the amount of blowing agent and weight fraction of pMDI. Th e cell size of pMDI modifi ed foams was largest when the weight fraction of pMDI was 5% and kept decreasing as the pMDI percentage became higher. Th e density of the foams increased with the increase of the weight fraction of pMDI. Th e addition of pMDI increased slightly the thermal conductivity of tannin/furanic foam with the foams still presenting good thermal insulation. Moreover, the addition of pMDI in tannin/furanic foams improved markedly the foam’s mechanical properties

    Rice straw-based activated carbons doped with SiC for enhanced hydrogen adsorption

    Get PDF
    Activated carbons (ACs) based on rice straw (RS) were synthesised using potassium carbonate as activating agent at three different K2CO3/RS weight ratios. Morphological, chemical, structural as well as textural characterisations were carried out in order to establish relationships between the physicochemical properties of the materials and their hydrogen adsorption capacities. The ACs contained potassium and silicon as the main impurities. Si was identified by XRD in both phases of silicon dioxide and silicon carbide. The presence of SiC was particularly surprising due to the rather low activation temperature, much lower than what is usually required for SiC synthesis. ACs exhibited well-developed surface areas (approximatively 2000–2100 m2 g-1) and high micropore volumes, making them suitable for hydrogen storage applications. RS-based ACs showed higher hydrogen storage capacities than those previously obtained with KOH-activated sucrose. The latter exhibited hydrogen uptakes (excess, 10 MPa, 298 K) up to 0.55 wt. %, whereas 0.65 wt. % was measured for RS-based ACs in the same conditions. The higher hydrogen capacities and isosteric heats of adsorption found here were attributed to the presence of SiC

    Exploring carbon nanotubes / BaTiO3 / Fe3O4 Nanocomposites as microwave absorbers

    Get PDF
    This is the final version of the article. Available from EM Academy via the link in this record.Open access journalWe report the modelling and characterization of microwave absorbing materials specially designed for 26–37 GHz frequency range (Ka-band). Composite materials based on carbon nanotubes/BaTiO3/Fe3O4 in a phosphate ceramic matrix were produced, and their electromagnetic response was investigated. Both theoretical and experimental results demonstrate that this material can absorb up to 100% of the power of an incident plane wave at a normal incidence angle. The physics underlying such absorption level is discussed in terms of refractive index of the material.This work was supported in part by FP7-PEOPLE-2013-IRSES-610875 NAmiceMC, FP7 Twinning Grant Inconet EaP 004. P. Kuzhir is thankful for support by Tomsk State University Competitiveness Improvement Program. Lab-STICC is UMR CNRS 6285

    Effect of morphology and hydrophobization of MoS2 microparticles on the stability of poly-α-olefins lubricants

    Get PDF
    International audienceThe use of MoS ⁠ 2 nanoparticles as additive to lubricating oils is restricted by their low stability in oily media, which limits their use despite the enormous benefits associated with their intrinsic properties in terms of reduction of friction and wear coefficients. In this context, we investigated the effect of morphologies (platelets vs spheres) and surface functionalization of nanoparticles on the stability of their suspensions in poly-α-olefins (PAO) with various viscosities, which are base oils used in wind turbines. The particles were characterized by XRD, FTIR, scanning electron microscopy, atomic force microscopy and dynamic light scattering, and the stability of the resultant formulations was followed by optical (non-contact) measurements. It was found that the dispersions had similar stability despite the larger size of platelet-like particles compared to spherical ones (1-5 μm vs 600-800 nm). The dispersibility could be increased through grafting of alkylsilane on the surface defects (the longer the alkyl chain, the more stable the formulation) and with the increase of the oil kinematic viscosity (from 34 to 1705 cps at 25 °C)

    Hollow carbon spheres in microwaves: Bio inspired absorbing coating

    Get PDF
    This is the final version of the article. Available from American Institute of Physics (AIP)] via the DOI in this record.The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.This work was supported in part by FP7-PEOPLE-2013- IRSES-610875 NAmiceMC, FP7 Twinning Grant Inconet EaP_004
    corecore