
ww.sciencedirect.com

i n t e rn a t i o n a l j o u rn a l o f h y d r o g e n en e r g y x x x ( 2 0 1 7 ) 1e7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
Short Communication
Rice straw-based activated carbons doped with SiC
for enhanced hydrogen adsorption
S. Schaefer a, G. Mu~niz a,b,c, M.T. Izquierdo d, S. Mathieu a,
M.L. Ballinas-Casarrubias b, G. Gonz�alez-S�anchez c, A. Celzard a,
V. Fierro a,*

a Institut Jean Lamour, UMR CNRS - Universit�e de Lorraine n�7198, ENSTIB, 27 Rue Philippe S�eguin, CS 60036,

88026 �Epinal cedex, France
b Department of Renewable Energies and Environmental Protection, Centro de Investigacion en Materiales Avanzados

(CIMAV S.C.), Chihuahua, Chih, Mexico
c Graduate Department, Facultad de Ciencias Quımicas, Universidad Autonoma de Chihuahua (UACH), Chihuahua,

Chih, Mexico
d Instituto de Carboquı́mica (ICB-CSIC), Miguel Luesma Cast�an, 4, Zaragoza, E-50018, Spain
a r t i c l e i n f o

Article history:

Received 8 January 2017

Received in revised form

6 February 2017

Accepted 7 February 2017

Available online xxx

Keywords:

Enhanced physisorption

Hydrogen storage

Silicon carbide

Rice straw

Activated carbons
* Corresponding author.
E-mail address: vanessa.fierro@univ-lorra

http://dx.doi.org/10.1016/j.ijhydene.2017.02.0
0360-3199/© 2017 Hydrogen Energy Publicati

Please cite this article in press as: Schaef
adsorption, International Journal of Hydrog
a b s t r a c t

Activated carbons (ACs) based on rice straw (RS) were synthesised using potassium car-

bonate as activating agent at three different K2CO3/RS weight ratios. Morphological, chem-

ical, structural as well as textural characterisations were carried out in order to establish

relationships between the physicochemical properties of the materials and their hydrogen

adsorption capacities. The ACs contained potassium and silicon as the main impurities. Si

was identified by XRD in both phases of silicon dioxide and silicon carbide. The presence of

SiC was particularly surprising due to the rather low activation temperature, much lower

than what is usually required for SiC synthesis. ACs exhibited well-developed surface areas

(approximatively 2000e2100m2 g�1) and highmicropore volumes, making them suitable for

hydrogen storage applications. RS-based ACs showed higher hydrogen storage capacities

than those previously obtained with KOH-activated sucrose. The latter exhibited hydrogen

uptakes (excess, 10 MPa, 298 K) up to 0.55 wt. %, whereas 0.65 wt. % was measured for RS-

based ACs in the same conditions. The higher hydrogen capacities and isosteric heats of

adsorption found here were attributed to the presence of SiC.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The design of high-efficiency hydrogen storage systems is a

bottleneck step in the development of hydrogen as an energy
ine.fr (V. Fierro).
43
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vector. Solid-state hydrogen storage systems, either by ab-

sorption or adsorption, have been investigated for many

years. Activated carbons (ACs) are cheap, compared to more

sophisticated materials such as Metal Organic Frameworks,
evier Ltd. All rights reserved.

sed activated carbons doped with SiC for enhanced hydrogen
x.doi.org/10.1016/j.ijhydene.2017.02.043

https://core.ac.uk/display/289994726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:vanessa.fierro@univ-lorraine.fr
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
http://dx.doi.org/10.1016/j.ijhydene.2017.02.043
http://dx.doi.org/10.1016/j.ijhydene.2017.02.043
http://dx.doi.org/10.1016/j.ijhydene.2017.02.043


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( 2 0 1 7 ) 1e72
and are often biosourced materials exhibiting high hydrogen

storage capacities at cryogenic temperatures (around 6.8 wt. %

in excess at 77 K) [1]. Hydrogen excess uptake in ACs ismost of

the time lower than 1 wt. % near room temperature and

10 MPa [1e4]. Several strategies were applied to increase

hydrogen e ACs surface interactions. Metal nanoparticle

doping is the most widespread approach for inducing

hydrogen chemisorption, spill-over or polarised physisorption

[5e10]. The second approach consists in introducing hetero-

atoms for increasing the hydrogen adsorption potential at the

surface of the carbon-based materials. Thus, N and B were

introduced, forming carbon nitrides, carbon boro-nitrides or

even carbides, and their positive effect on hydrogen adsorp-

tion was demonstrated [11e15]. The favourable effect of sili-

con carbide (SiC) on hydrogen adsorption was theoretically

[16] and experimentally [17,18] investigated. However, the

synthesis of SiC remains uneasy due to the high temperatures

required, typically in the range 1600e1900 K [19]. In addition,

the interactions between hydrogen and SiC were investigated

in carbon-SiC nanotubes [17,18] having low surface areas (i.e.,

below 100 m2 g�1, according to the BET method based on N2

adsorption at 77 K). Despite the fact that these studies evi-

denced the possibility of using SiC-doped materials for

hydrogen storage, the low surface areas of those materials

limited the hydrogen uptake. Hence, SiC-containingmaterials

of much higher specific areas might be interesting materials

for hydrogen storage.

The synthesis of SiC and SiC-containingmaterials based on

rice by-products such as rice husk and rice straw at high

temperatures is well known [19e23]. Hydrogen storage in rice-

based ACs has been studied at 77 K, a temperature at which

pore texture is much more important than electrostatic in-

teractions [24,25]. As far as we know, hydrogen adsorption

heats of ACs containing SiC were never determined at near

room temperature.

Therefore, the purpose of the present study was to eluci-

date whether the presence of Si in high surface area-ACs

improves hydrogen adsorption near room temperature. ACs

were thus prepared by K2CO3 activation of rice straw (RS). The

corresponding hydrogen adsorption data were compared with

previous results taking into account the surface area and the

average pore size of the ACs. We definitely showed that SiC

doping has a positive effect on hydrogen adsorption,

increasing both excess uptake and heat of adsorption.
Experimental

Materials synthesis

20 g of rice straw (RS) were cut, manually ground and then

impregnated for 24 h using 300 mL of a solution of potassium

carbonate of the appropriate concentration in order to get the

desired activation ratio. Then the mixture was left to dry at

393 K K2CO3 is a better activating agent than Na2CO3 [26,27]

and it is also cheaper than KOH. In order to promote the

activation effect, the activation temperature was 1173 K,

higher activation temperatures being expected to promote the

conversion of SiO2 into SiC. The activation ratio (R) was

defined as the K2CO3 to RS mass ratio, and the corresponding
Please cite this article in press as: Schaefer S, et al., Rice straw-ba
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samples were labelled KC-RS_R, where R was fixed to 3, 4 or 5.

After impregnation, RS was put in an oven at 393 K overnight

in order to evaporate water. The impregnated, dry, RS was

placed in a nickel crucible and then put in a horizontal

stainless steel tubular oven flushed by pure nitrogen flowing

at 100 mL min�1, and heated at 3 K min�1 up to the final

temperature of 1173 K. The latter was held for 2 h, and then

the sample was cooled under N2 flow. The crucible containing

the activated material was then removed from the furnace

and let to oxidise slowly in air for several hours to avoid vio-

lent K oxidation upon washing. Then, the material was

washed with hydrochloric acid (1 mol L�1), bi-distilled water,

and finally in a Soxhlet extractor for 2 days with bi-distilled

water again to eliminate the remaining carbonates.

Characterisation

The textural characterisation of ACs was performed by ni-

trogen and carbon dioxide adsorption at 77 and 273 K,

respectively, using an automatic adsorption apparatus (ASAP

2020, Micromeritics). The samples were degassed under vac-

uum at 423 K until the pressure stabilised around 0.2e0.4 mPa

for more than 48 h. Further degassing was carried out at the

measuring port for at least 6 h. Cool and warm volumes were

determined after nitrogen or carbon dioxide adsorption to

avoid helium entrapment in the narrowest pores. Adsorption

data were treated using the Microactive software from

Micromeritics. The pore size distributions (PSDs) were ob-

tained using non-local density functional theory (NLDFT) with

the Solution of Adsorption Integral Equation Using Splines

(SAIEUS®) routine. SAIEUS® has the advantage of combining

both CO2 and N2 adsorption data to get more accurate PSDs

[28]. The aforementioned NLDFT method was also used to

determine the surface areas, SNLDFT (m
2 g�1), by integrating the

PSDs over the whole range of pore sizes [29].

Scanning Electron Microscopy (SEM) observations with

secondary electrons (SE) and backscattered electrons (BSE),

associated with chemical analysis using Energy-dispersive X-

ray spectroscopy (EDX), were carried out. All microscopy

studies were made with a FEI QUANTA600FEG equipped with

a Brucker Quantax spectrometer. X-ray diffraction (XRD) pat-

terns were collected with a Bruker D8 Advance X-ray powder

diffractometer equipped with a Cu anticathode working at

40 kV and 40 mA and a scintillation detector. The diffraction

patterns were obtained over a 2q range from 10� to 80� with a

step of 0.02�. The assignation of crystalline phases was per-

formed based on Joint Committee on Powder Diffraction

Standards (JCPDS) files. Ash contents were obtained after

calcination in air, using a muffle oven heated at 5 K min�1

until the final temperature of 1073 K, which was held for

45 min.

Hydrogen adsorption experiments were carried out at

298 K using a high-pressure automatic adsorption apparatus

(HPVA II, Micromeritics). The temperature was set to 293 K to

measure the cold volume, and then it was changed to 298 K to

measure the warm volume and to carry out hydrogen

adsorption. The pressure range was 0.15e10 MPa for adsorp-

tion and 10e2 MPa for desorption. The contribution of the

empty cell was systematically measured and subtracted to all

data in order to improve the accuracy. The quantity of
sed activated carbons doped with SiC for enhanced hydrogen
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material within the sample cell was around 0.5 g. Isosteric

heats of adsorption (Qst) were calculated using three

hydrogen isotherms at three different temperatures (283, 298

and 313 K). The isosteric heats Qst were calculated using the

ClapeyroneClausius equation.
Results and discussion

Chemical and textural characterisation

The ash content of RS was 19.3 wt. % on dry basis. RS ashes

were mainly composed of SiO2, but other elements like po-

tassium or calcium could also be found [30,31]. After RS acti-

vation, ash contents were equal to 3.12, 1.42 and 1.43 wt. % for

KC-RS_3, KC-RS_4, KC-RS_5, respectively. Ash content

decreased when R increased due to the improved reaction of

the alkali carbonate with silica during activation, followed by

leaching out the products. In order to obtain some information

about ash composition, the chemicalmapping of KC-RS_3was

carried out by EDX. The composition obviously varied

depending on the area under study, butwaswithin the ranges:

96.0e90.1 wt. % (C), 0e4.4 wt. % (N), 3.8e6.1 wt. % (O), 0e0.4 wt.

% (S), 0e2.1wt. % (Si), 0e0.5 wt. % (K), and 0e0.4 wt. % (Na). The

presence of S and N is not surprising in biosourced materials.

Fig. 1 presents the results of SEM-BSE imaging, EDX mapping

for Si and K, and the XRD pattern for the same material (KC-

RS_3).

Fig. 1(a) shows that part of the initial SiO2 was converted

into SiC. Despite having well-defined peaks, the low intensity

of the latter did not allow calculating the corresponding SiC

content. SiC industrial production, especially by Acheson
Fig. 1 e (a) XRD pattern and assignation of the SiO2 and SiC peaks

(d) SEM-BSE picture of KC-RS_3, (e) and (f) EDX mapping of (d) fo
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process, requires extremely high temperatures (i.e., >2673 K)

[32]. However, SiC synthesis can also be achieved by direct

carbothermal reduction in the 1573e1873 K temperature

range [19], which is still much higher than the activation

temperature used in the present study, 1173 K. Rice, andmore

generally plant-based precursors, contain metallic impurities

such as Fe, Ca, K, Mg, Al and Mn, which are known to be

catalysts of SiC formation [30,33]. Mg is the most efficient one

for this purpose, as it allows decreasing the temperature of

conversion of SiO2 into SiC down to 873 K [34]. In the present

work, RS was used as received, i.e., without acidic pre-

treatment or washing. As a consequence, the metallic ele-

ments naturally present might catalyse SiC formation. More-

over, as the activation agent is K2CO3, its reaction with silica

occurs, leading to the formation of K2SiO3. The latter might

also catalyse SiC formation, as the same has already been

demonstrated for sodium silicate (Na2SiO3), which reduced

the SiC temperature formation by 300 K [35]. Furthermore,

K2CO3-impregnated RS was placed inside of a nickel crucible

for activation and Ni, similarly to Fe and Co, is known to ca-

talyse SiC formation [33,36,37]. Therefore, SiC was probably

produced through catalytic reactions due to the initial RS

mineral content, to K2SiO3 formed during the process, and to

nickel used as container.

Thematerial presented a porous structuremaintaining the

original morphology of the initial vegetal cells (Fig. 1(b) and

(c)). EDX mapping of the image of Fig. 1(d), evidencing min-

erals as bright zones when observed with the BSE detector,

showed that K was homogeneously distributed on the surface

(Fig. 1(e)), probably due to RS impregnation with K2CO3 before

activation. Si was also present overall on the surface, but some

zones were richer (Fig. 1(f)).
for KC-RS_3 sample, (b) and (c) SEM-SE pictures of KC-RS_3,

r K and Si, respectively.

sed activated carbons doped with SiC for enhanced hydrogen
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Fig. 2 e Adsorption properties of the activated carbons: (a) hydrogen adsorption-desorption isotherms on KC-RS_3 sample at

298 K (adsorption: open symbols; desorption: closed symbols); (b) comparison between the specific excess hydrogen uptake

at 2 MPa and 298 K of materials synthesised here and those from a previous study [1]; (c) isosteric heats of adsorption versus

excess adsorbed hydrogen amount; and (d) dependence of the average Qst (<Qst>) or near zero coverage Qst (Qst�) on the

average micropore size from NLDFT [1,42].

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( 2 0 1 7 ) 1e74
Textural characterisation and hydrogen adsorption

PSDs obtained by NLDFT application to the N2 and CO2

adsorption data (not shown) allowed calculating ACs surface

areas (SNLDFT), which were equal to 2197, 2162 and 2034m2 g�1

for KC-RS_3, KC-RS_4 and KC-RS_5, respectively. Thus, SNLDFT

decreased when the activation ratio R increased due to an

effect of over-activation, leading to pore widening and even

pore destruction, which were observed on the corresponding

PSDs. Indeed, whereas the volume of the ultramicropores

(<0.7 nm) remained almost constant and equal to 0.2 cm3 g�1,

the volume of supermicropores (0.7e2 nm) and mesopores

(>2 nm) decreased from 0.75 to 0.58 cm3 g�1 and from 0.56 to

0.28 cm3 g�1, respectively, when R increased from 3 to 5. The

average micropore diameter was very similar for the three

ACs and equal to 1.12, 1.22 and 1.13 nm for the KC-RS_3, KC-

RS_4 and KC-RS_5 samples, respectively. This textural anal-

ysis allowed to evidence the mainly microporous character of

the present materials.

Fig. 2(a) shows the hydrogen adsorption isotherm at 298 K

of the sample KC-RS_3, taken as example. All hydrogen
Please cite this article in press as: Schaefer S, et al., Rice straw-ba
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isotherms were completely reversible and had the typical

shape reported for ACs in general [1,10]. The excess adsorbed

uptakes at 10 MPa were equal to 0.63, 0.64 and 0.59 wt. % for

KC-RS_3, KC-RS_4, and KC-RS_5 samples, respectively. No

hysteresis was found, suggesting that neither chemisorption

nor absorption took place in the materials. As a consequence,

the adsorption was due to physisorption only. Dividing

adsorbed amount values by the specific surface area gave

specific excess values (mmol m�2), which were represented as

a function of average micropore sizes. This a common tech-

nique to compare hydrogen storage performances, which was

previously reported in the literature [38].

Thus, Fig. 2(b) compares the specific excess values of

hydrogen uptakemeasured on thematerials synthesised here

with those of ACs based on sucrose activatedwith KOH [1]. RS-

based ACs exhibited slightly higher values than those based

on sucrose. Thismight be due to the increase of the adsorption

potential due to the presence of SiC [16], similarly to what had

been shownwith somemetallic heteroatoms. Thus, K, Na or Li

are well-known to enhance hydrogen adsorption when those

metals are located at the surface of a carbon adsorbent,
sed activated carbons doped with SiC for enhanced hydrogen
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inducing local charges due to the significant differences of

electronegativity between the carbon support and the metal.

This phenomenon has been theoretically and experimentally

described for K and Li, and is known under the names of

strong physisorption or polarised physisorption [8,9,39e41].

The nature of the carbide bond might also explain an

enhanced hydrogen adsorption. Carbide bonds indeed have a

heteropolar nature that implies local charges on the carbide,

and which can induce a dipole on hydrogen molecules

approaching the adsorbent surface andmay lead to enhanced

adsorption [16,43]. Although chemisorption could occur on

SiC, mostly at high temperature [44e46] as on alkali-

containing carbon materials [17,47], neither steps at low

pressure nor hysteresis were found on the adsorption iso-

therms. Thus, the enhancement of hydrogen adsorption

should be due to strong or polarised physisorption only. In

order to investigate this assumption, isosteric heats Qst were

determined based on the hydrogen adsorptionedesorption

isotherms carried out for each AC at 283, 298 and 313 K.

Fig. 2(c) shows the dependence of the isosteric heats Qst

with the adsorbed amount for the KC-RS_3 material and a

sucrose-derived AC, having average micropore diameters of

1.12 nm and 0.7 nm, respectively. The isosteric heats of

adsorption Qst of sucrose activated with KOH was given for

the sake of comparison. For the RS-derived AC, Qst decreased

as the adsorbed amount increased due to the fact that the

adsorption potential normally decreases as the coverage in-

creases. This behaviour is typical of hydrogen adsorption on

porous carbons. The usual values of isosteric heats Qst for

graphene are within the range 2e6 kJ mol�1 [48,49]. The values

obtained here are thus far above this range, showing again

that a classical physisorption is not the only phenomenon

that occurred. The isosteric heat Qst of sucrose-derived AC,

activatedwith KOH using aW¼ 3 ratio, was lower than that of

KC-RS_3 in the whole coverage range, despite the fact that the

average pore diameter was narrower for the sucrose-derived

AC. Therefore, the polarising effect was not only due to K,

and Si should also have an effect.

Schindler and LeVan modelled hydrogen adsorption in

graphitic carbon with slit-shaped pores, and showed an in-

verse dependence between isosteric heats of adsorption Qst

and pore sizes [42]. Fig. 2(d) shows the comparison between

the values predicted by themodel of Schindler and LeVanwith

those determined on KOH-activated sucrose on the one hand,

and those determined in this study (KC-RS_R) on the other

hand. The values of Qst are shown as average (<Qst>) or as

low-coverage isosteric heats of adsorption Qst (Qst�). Qst�

values were around 11e12 kJ mol�1 and should correspond to

the interaction of hydrogen with the most energetic sites of

the ACs. <Qst> were still significantly high, around

10 kJ mol�1, compared to the values obtained for the activated

carbon derived from sucrose (i.e., between 7 and 9 kJ mol�1)

and to the theoretical values from Schindler and LeVan [42],

around 6e7 kJ mol�1. Due to these higher heats of adsorption

Qst, hydrogen storage was significantly enhanced in the pre-

sent ACs, from 0.55 to 0.65 wt. % (excess, 10 MPa, 298 K),

compared to ACs of similar average pore diameter. Such

hydrogen storage capacities might probably be improved

further if the average pore diameter was narrower. A possible

strategy could therefore be the activation of rice by-products
Please cite this article in press as: Schaefer S, et al., Rice straw-ba
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with KOH that might produce higher surface areas as well as

a PSD shifted to narrower pores [50e52].
Conclusion

Rice straw (RS) was activated with potassium carbonate to

produce ACs having surface areas as high as 2197 m2 g�1.

These ACs had a significant ash content (1.42e3.12 wt. %),

mainly due to the silica content of the precursor. Si and K

contents at the AC surface were determined by SEM-EDX. Si

was up to 4 times more abundant (2.1 wt. %) on the surface

than K (0.5 wt. %), and was present as both SiO2 and SiC

phases. As far as we know, this is the first time that SiC is

observed after chemical activation at relatively low tempera-

ture (1173 K). The presence of SiC can be explained by different

catalytic reactions, and especially through the formation of

K2SiO3. Hydrogen adsorption on RS-derived ACs was totally

reversible and therefore entirely attributable to physisorption.

Due to the presence of SiC and K, polarised adsorption of

hydrogen was expected and was confirmed by the high values

of isosteric heat of adsorption Qst near room temperature, in

the range 9e12 kJ mol�1. This produced a significantly in-

crease of excess hydrogen uptake, from 0.55 to 0.65 wt. % at

10 MPa and 298 K, compared to non-doped ACs having similar

average pore diameters.
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