1,416 research outputs found
Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks
The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep
Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation
Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM) sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12\u201315 Hz) sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks
Fat Mass and Obesity-Associated Gene (FTO) in Eating Disorders: Evidence for Association of the rs9939609 Obesity Risk Allele with Bulimia nervosa and Anorexia nervosa
Objective: The common single nucleotide polymorphism (SNP) rs9939609 in the fat mass and obesity-associated gene (FTO) is associated with obesity. As genetic variants associated with weight regulation might also be implicated in the etiology of eating disorders, we evaluated whether SNP rs9939609 is associated with bulimia nervosa (BN) and anorexia nervosa (AN). Methods: Association of rs9939609 with BN and AN was assessed in 689 patients with AN, 477 patients with BN, 984 healthy non-population-based controls, and 3,951 population-based controls (KORA-S4). Based on the familial and premorbid occurrence of obesity in patients with BN, we hypothesized an association of the obesity risk A-allele with BN. Results: In accordance with our hypothesis, we observed evidence for association of the rs9939609 A-allele with BN when compared to the non-population-based controls (unadjusted odds ratio (OR) = 1.142, one-sided 95% confidence interval (CI) 1.001-infinity; one-sided p = 0.049) and a trend in the population-based controls (OR = 1.124, one-sided 95% CI 0.932-infinity; one-sided p = 0.056). Interestingly, compared to both control groups, we further detected a nominal association of the rs9939609 A-allele to AN (OR = 1.181, 95% CI 1.027-1.359, two-sided p = 0.020 or OR = 1.673, 95% CI 1.101-2.541, two-sided p = 0.015,). Conclusion: Our data suggest that the obesity-predisposing FTO allele might be relevant in both AN and BN. Copyright (C) 2012 S. Karger GmbH, Freibur
Clinical and genetic analysis of 29 Brazilian patients with Huntington’s disease-like phenotype
Huntington’s disease (HD) is a neurodegenerative disorder characterized by chorea,
behavioral disturbances and dementia, caused by a pathological expansion of the CAG
trinucleotide in the HTT gene. Several patients have been recognized with the typical HD
phenotype without the expected mutation. The objective of this study was to assess the
occurrence of diseases such as Huntington’s disease-like 2 (HDL2), spinocerebellar ataxia
(SCA) 1, SCA2, SCA3, SCA7, dentatorubral-pallidoluysian atrophy (DRPLA) and choreaacanthocytosis
(ChAc) among 29 Brazilian patients with a HD-like phenotype. In the group
analyzed, we found 3 patients with HDL2 and 2 patients with ChAc. The diagnosis was not
reached in 79.3% of the patients. HDL2 was the main cause of the HD-like phenotype in
the group analyzed, and is attributable to the African ancestry of this population. However,
the etiology of the disease remains undetermined in the majority of the HD negative
patients with HD-like phenotype.
Key words: Huntington’s disease, Huntington’s disease-like, chorea-acanthocytosis,
Huntington’s disease-like 2
Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes
Listeria monocytogenes is a notably invasive bacterium associated with life-threatening food-borne disease in humans. Several surface proteins have been shown to be essential in the adhesion of L. monocytogenes, and in the subsequent invasion of phagocytes. Because the control of the invasion of host cells by Listeria could potentially hinder its spread in the infected host, we have examined the effects of a protease treatment on the ability of L. monocytogenes to form biofilms and to invade tissues. We have chosen serratiopeptidase (SPEP), an extracellular metalloprotease produced by Serratia marcescens that is already widely used as an anti-inflammatory agent, and has been shown to modulate adhesin expression and to induce antibiotic sensitivity in other bacteria. Treatment of L. monocytogenes with sublethal concentrations of SPEP reduced their ability to form biofilms and to invade host cells. Zymograms of the treated cells revealed that Ami4b autolysin, internalinB, and ActA were sharply reduced. These cell-surface proteins are known to function as ligands in the interaction between these bacteria and their host cells, and our data suggest that treatment with this natural enzyme may provide a useful tool in the prevention of the initial adhesion of L. monocytogenes to the human gu
Model-based clustering via linear cluster-weighted models
A novel family of twelve mixture models with random covariates, nested in the
linear cluster-weighted model (CWM), is introduced for model-based
clustering. The linear CWM was recently presented as a robust alternative
to the better known linear Gaussian CWM. The proposed family of models provides
a unified framework that also includes the linear Gaussian CWM as a special
case. Maximum likelihood parameter estimation is carried out within the EM
framework, and both the BIC and the ICL are used for model selection. A simple
and effective hierarchical random initialization is also proposed for the EM
algorithm. The novel model-based clustering technique is illustrated in some
applications to real data. Finally, a simulation study for evaluating the
performance of the BIC and the ICL is presented
Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism
In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.This work was supported by the Spanish Ministry of Science and Innovation (CSD2009-00088, BIO2012-34937 and SAF2011-23933), the Junta de Andalucia (P11-CTS-7187), and the Oxalosis and Hyperoxaluria Foundation (OHF2012 to B.C.). A.L.P. acknowledges a Ramon y Cajal research contract (RyC2009-04147) from the Spanish Ministry of Science and Innovation and the University of Granada. N. M-T acknowledges a FPI predoctoral fellowship from the Spanish Ministry of Science and Innovation. A.C.C. and N.T. were supported by the grant IOS-1353845 from the National Science Foundation (NSF). N.T. acknowledges the Tetelman Fellowship for International Research on the Sciences awarded by Yale University.Peer Reviewe
Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes
Targeted resequencing gene panels are used in the diagnostic setting to identify gene defects in epilepsy. We performed targeted resequencing using a 30-genes panel and a 95-genes panel in 349 patients with drug-resistant epilepsies beginning in the first years of life. We identified 71 pathogenic variants, 42 of which novel, in 30 genes, corresponding to 20.3% of the probands. In 66% of mutation positive patients, epilepsy onset occurred before the age of 6 months. The 95-genes panel allowed a genetic diagnosis in 22 (6.3%) patients that would have otherwise been missed using the 30-gene panel. About 50% of mutations were identified in genes coding for sodium and potassium channel components. SCN2A was the most frequently mutated gene followed by SCN1A, KCNQ2, STXBP1, SCN8A, CDKL5, and MECP2. Twenty-nine mutations were identified in 23 additional genes, most of them recently associated with epilepsy. Our data show that panels targeting about 100 genes represent the best cost-effective diagnostic option in pediatric drug-resistant epilepsies. They enable molecular diagnosis of atypical phenotypes, allowing to broaden phenotype-genotype correlations. Molecular diagnosis might influence patients' management and translate into better and specific treatment recommendations in some conditions
Managerial delegation in a dynamic renewable resource oligopoly
I propose a differential oligopoly game of resource extraction under (quasi-static) open-loop and nonlinear feedback strategies, where firms are managerial and two alternative types of delegation contract are considered. Under open-loop information, delegation expands the residual steady state resource stock. Conversely, under nonlinear feedback information the outcome depends on the structure of managerial incentives. If sales are used, once again delegation favours resource preservation. On the contrary, if market shares are included in the delegation contract, this combines with an underlying voracity effect in shrinking the steady state volume of the resource
- …
