4,139 research outputs found

    Interactions mechanism of commonly used drugs for the treatment of Covid-19

    Get PDF
    In this study conformation analysis of seven drugs commonly used in the treatment of COVID-19 was performed. The most stable conformers of the drug molecules were used as initial data for docking analysis. Using the Cavityplus program, the probable most active binding sites of both apo and holo forms of COVID-19 main protease enzyme (Mpro) and spike glycoprotein of SARSCoV-2 receptors were determined. The interaction mechanisms of the 7 FDA approved drugs (arbidol, colchicine, dexamethasone, favipiravir, galidesivir, hydroxychloroquine, remdesivir) were examined using the AutoDock Vina program. The six of the seven drugs were found to be more stable in binding to apo form of COVID-19 Mpro and spike glycoprotein. Moreover, a set of molecular mechanics (MM) Poisson-Boltzmann (PB) surface area (SA) calculations on the investigated drugs-protein systems were performed and the estimated binding free energy of remdesivir and the apo form of Mpro system was found to be the best. The interaction results of FDA drugs with the apo form of COVID-19 Mpro and spike glycoprotein can play an important role for the treatment of COVID-19.                     KEY WORDS: COVID-19, Drugs, Molecular modelling, Conformational analysis, Molecular docking   Bull. Chem. Soc. Ethiop. 2020, 34(3), 613-623. DOI: https://dx.doi.org/10.4314/bcse.v34i3.1

    Multicanonical Study of the 3D Ising Spin Glass

    Full text link
    We simulated the Edwards-Anderson Ising spin glass model in three dimensions via the recently proposed multicanonical ensemble. Physical quantities such as energy density, specific heat and entropy are evaluated at all temperatures. We studied their finite size scaling, as well as the zero temperature limit to explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include

    A New Approach to Spin Glass Simulations

    Full text link
    We present a recursive procedure to calculate the parameters of the recently introduced multicanonical ensemble and explore the approach for spin glasses. Temperature dependence of the energy, the entropy and other physical quantities are easily calculable and we report results for the zero temperature limit. Our data provide evidence that the large LL increase of the ergodicity time is greatly improved. The multicanonical ensemble seems to open new horizons for simulations of spin glasses and other systems which have to cope with conflicting constraints

    Radiation Testing of Electronics for the CMS Endcap Muon System

    Get PDF
    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment

    Graph Mining for Object Tracking in Videos

    No full text
    International audienceThis paper shows a concrete example of the use of graph mining for tracking objects in videos with moving cameras and without any contextual information on the objects to track. To make the mining algorithm efficient, we benefit from a video representation based on dy- namic (evolving through time) planar graphs. We then define a number of constraints to efficiently find our so-called spatio-temporal graph pat- terns. Those patterns are linked through an occurrences graph to allow us to tackle occlusion or graph features instability problems in the video. Experiments on synthetic and real videos show that our method is effec- tive and allows us to find relevant patterns for our tracking application

    Fluid Flows of Mixed Regimes in Porous Media

    Full text link
    In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be present in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data, and the structural stability for the equation are established.Comment: 33 page

    Grundstate Properties of the 3D Ising Spin Glass

    Full text link
    We study zero--temperature properties of the 3d Edwards--Anderson Ising spin glass on finite lattices up to size 12312^3. Using multicanonical sampling we generate large numbers of groundstate configurations in thermal equilibrium. Finite size scaling with a zero--temperature scaling exponent y=0.74±0.12y = 0.74 \pm 0.12 describes the data well. Alternatively, a descriptions in terms of Parisi mean field behaviour is still possible. The two scenarios give significantly different predictions on lattices of size ≄123\ge 12^3.Comment: LATEX 9pages,figures upon request ,SCRI-9

    How large is "large NcN_c" for Nuclear matter?

    Full text link
    We argue that a so far neglected dimensionless scale, the number of neighbors in a closely packed system, is relevant for the convergence of the large NcN_c expansion at high chemical potential. It is only when the number of colors is large w.r.t. this new scale (\sim \order{10}) that a convergent large NcN_c limit is reached. This provides an explanation as to why the large NcN_c expansion, qualitatively successful in in vacuum QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter. It also means that phenomenological claims about high density matter based on large NcN_c extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247

    Three Millisecond Pulsars in FERMI LAT Unassociated Bright Sources

    Full text link
    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.Comment: Accepted for publication in ApJ Letter

    Measuring movement fluency during the sit-to-walk task

    Get PDF
    Restoring movement fluency is a key focus for physical rehabilitation; it's measurement, however, lacks objectivity. The purpose of this study was to find whether measurable movement fluency variables differed between groups of adults with different movement abilities whilst performing the sit-to-walk (STW) movement. The movement fluency variables were: (1) hesitation during movement (reduction in forward velocity of the centre of mass; CoM), (2) coordination (percentage of temporal overlap of joint rotations) and (3) smoothness (number of inflections in the CoM jerk signal)
    • 

    corecore