250 research outputs found

    Antimicrobial‐Resistant Enterococcus spp. in Wild Avifauna from Central Italy

    Get PDF
    Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial‐resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high‐level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug‐resistant, with 19.41% extensively drug‐resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)‐Ia and aac(6′)‐Ie‐aph(2′’)‐Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial‐resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, to

    Plasma exchange in acute and chronic hyperviscosity syndrome: a rheological approach and guidelines study

    Get PDF
    Therapeutic plasma exchange is an extra-corporeal technique able to remove from blood macromolecules and/or replace deficient plasma factors. It is the treatment of choice in hyperviscosity syndrome, due to the presence of quantitatively or qualitatively abnormal plasma proteins such as paraproteins. In spite of a general consensus on the indications to therapeutic plasma exchange in hyperviscosity syndrome, data or guide lines about the criteria to plan the treatment are still lacking. We studied the rheological effect of plasma exchange in 20 patients with plasma hyperviscosity aiming to give data useful for a rational planning of the treatment. Moreover, we verified the clinical applicability of the estimation of plasma viscosity by means of Kawai's equation. Plasma exchange decreases plasma viscosity about 20-30% for session. Only one session is required to normalize plasma viscosity when it is 2.2 till to 6 mPas. A fourth session is useless, especially if the inter-session interval is < 15 days. By means of a polynomial equation, knowing basal-plasma viscosity and the disease of a patient, we can calculate the decrease of viscosity obtainable by each session of plasma exchange then the number of session required to normalize the viscosity. Kawai's equation is able to evaluate plasma viscosity in healthy volunteers, but it is not clinically reliable in paraproteinemias. [Pubmed] [Scholar] [EndNote] [BibTex

    Effects of Current and Future Summer Marine Heat Waves on Posidonia oceanica: Plant Origin Matters?

    Get PDF
    Marine heat waves (MHWs), prolonged discrete anomalously warm water events, have been increasing significantly in duration, intensity and frequency all over the world, and have been associated with a variety of impacts including alteration of ecosystem structure and function. This study assessed the effects of current and futureMHWs on the Mediterranean seagrass Posidonia oceanica performance, also testing the importance of the thermal environment where the plant lives. The effects of current MHWs were studied through a mensurative experiment in a cold and in a warm site (West and North-West Sardinia, Italy, respectively). Future MHWs effects were tested through a manipulative experiment using P. oceanica shoots collected fromthe cold and warmsites and transplanted in a common garden in front of a power plant (North-West Sardinia): here plants were exposed to heat longer in duration and stronger in intensity than the natural MHWs of the last 20 years, resembling the future scenario. Morphological (total # of leaves, maximum leaf length, and percentage of total necrotic leaf length per shoot) and biochemical variables (leaf proteins, carbohydrates, and lipids) were considered. Plants had similar sublethal responses in both the experiments for most of the variables, revealing that current and future MHWs had similar effect types, but different in magnitude depending on the intensity of the waves: in general, the number of leaves, the maximum leaf length and lipid content decreased, while the leaf necrosis and carbohydrates increased. However, also the origin of the plants affected the results, corroborating the hypothesis that the thermal context the plants live affects their tolerance to the heat. Overall, this study provided evidence about the importance of biochemical variations, such as carbohydrate and lipid levels, as potentially good indicators of seagrass heat stress

    Effects of Current and Future Summer Marine Heat Waves on Posidonia oceanica: Plant Origin Matters?

    Get PDF
    Marine heat waves (MHWs), prolonged discrete anomalously warm water events, have been increasing significantly in duration, intensity and frequency all over the world, and have been associated with a variety of impacts including alteration of ecosystem structure and function. This study assessed the effects of current and future MHWs on the Mediterranean seagrass Posidonia oceanica performance, also testing the importance of the thermal environment where the plant lives. The effects of current MHWs were studied through a mensurative experiment in a cold and in a warm site (West and North-West Sardinia, Italy, respectively). Future MHWs effects were tested through a manipulative experiment using P. oceanica shoots collected from the cold and warm sites and transplanted in a common garden in front of a power plant (North-West Sardinia): here plants were exposed to heat longer in duration and stronger in intensity than the natural MHWs of the last 20 years, resembling the future scenario. Morphological (total # of leaves, maximum leaf length, and percentage of total necrotic leaf length per shoot) and biochemical variables (leaf proteins, carbohydrates, and lipids) were considered. Plants had similar sublethal responses in both the experiments for most of the variables, revealing that current and future MHWs had similar effect types, but different in magnitude depending on the intensity of the waves: in general, the number of leaves, the maximum leaf length and lipid content decreased, while the leaf necrosis and carbohydrates increased. However, also the origin of the plants affected the results, corroborating the hypothesis that the thermal context the plants live affects their tolerance to the heat. Overall, this study provided evidence about the importance of biochemical variations, such as carbohydrate and lipid levels, as potentially good indicators of seagrass heat stress.En prens

    Investigating on the factors responsible for <i>Caulerpa racemosa</i> invasion = Indagini sui fattori responsabili dell'invasione di <i>Caulerpa racemosa</i>

    Get PDF
    The introduced alga Caulerpa racemosa (Forsskal) J. Agardh (Caulerpales, Chlorophyta) has become an important component of rocky assemblages in the subtidal of the Mediterranean. Understanding the faetors that regulate the establishment and spread of this species is, therefore, crucial to predicting future pathways of invasion and susceptible locales. Further, the aim of this study was to investigate on the factors responsible for Ihe successful invasion of C. racemosa in the Asinara Gulf (NW-Sardinia)

    Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities

    Get PDF
    Este artículo contiene 9 páginas, 5 figuras.Predicting where state-changing thresholds lie can be inherently complex in ecosystems characterized by nonlinear dynamics. Unpacking the mechanisms underlying these transitions can help considerably reduce this unpredictability. We used empirical observations, field and laboratory experiments, and mathematical models to examine how differences in nutrient regimes mediate the capacity of macrophyte communities to sustain sea urchin grazing. In relatively nutrient-rich conditions, macrophyte systems were more resilient to grazing, shifting to barrens beyond 1 800 g m22 (urchin biomass), more than twice the threshold of nutrient-poor conditions. The mechanisms driving these differences are linked to how nutrients mediate urchin foraging and algal growth: controlled experiments showed that low-nutrient regimes trigger compensatory feeding and reduce plant growth, mechanisms supported by our consumer–resource model. These mechanisms act together to halve macrophyte community resilience. Our study demonstrates that by mediating the underlying drivers, inherent conditions can strongly influence the buffer capacity of nonlinear systems.The Spanish Ministry of Science and Innovation funded this research (projects CMT2010-22273-C02-01-02 and CMT2013- 48027-C03-R) and supported J.B. (scholarship BES-2011-043630) and D.A. (Ramon y Cajal fellowship). The Spanish National Research Council supported R.A.’s visitorship (CSIC-201330E062).Peer reviewe

    Effect of a single acupuncture treatment on surgical wound healing in dogs: a randomized, single blinded, controlled pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to investigate the effect of acupuncture on wound healing after soft tissue or orthopaedic surgery in dogs.</p> <p>Methods</p> <p>29 dogs were submitted to soft tissue and/or orthopaedic surgeries. Five dogs had two surgical wounds each, so there were totally 34 wounds in the study. All owners received instructions for post operative care as well as antibiotic and pain treatment. The dogs were randomly assigned to treatment or control groups. Treated dogs received one dry needle acupuncture treatment right after surgery and the control group received no such treatment. A veterinary surgeon that was blinded to the treatment, evaluated the wounds at three and seven days after surgery in regard to oedema (scale 0-3), scabs (yes/no), exudate (yes/no), hematoma (yes/no), dermatitis (yes/no), and aspect of the wound (dry/humid).</p> <p>Results</p> <p>There was no significant difference between the treatment and control groups in the variables evaluated three and seven days after surgery. However, oedema reduced significantly in the group treated with acupuncture at seven days compared to three days after surgery, possibly due the fact that there was more oedema in the treatment group at day three (although this difference was nor significant between groups).</p> <p>Conclusions</p> <p>The use of a single acupuncture treatment right after surgery in dogs did not appear to have any beneficial effects in surgical wound healing.</p

    Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures

    Get PDF
    Coastal defence structures are proliferating as a result of rising sea levels and stormier seas. With the realisation that most coastal infrastructure cannot be lost or removed, research is required into ways that coastal defence structures can be built to meet engineering requirements, whilst also providing relevant ecosystem services—so-called ecological engineering. This approach requires an understanding of the types of assemblages and their functional roles that are desirable and feasible in these novel ecosystems. We review the major impacts coastal defence structures have on surrounding environments and recent experiments informing building coastal defences in a more ecologically sustainable manner. We summarise research carried out during the THESEUS project (2009–2014) which optimised the design of coastal defence structures with the aim to conserve or restore native species diversity. Native biodiversity could be manipulated on defence structures through various interventions: we created artificial rock pools, pits and crevices on breakwaters; we deployed a precast habitat enhancement unit in a coastal defence scheme; we tested the use of a mixture of stone sizes in gabion baskets; and we gardened native habitat-forming species, such as threatened canopy-forming algae on coastal defence structures. Finally, we outline guidelines and recommendations to provide multiple ecosystem services while maintaining engineering efficacy. This work demonstrated that simple enhancement methods can be cost-effective measures to manage local biodiversity. Care is required, however, in the wholesale implementation of these recommendations without full consideration of the desired effects and overall management goals
    • …
    corecore