36 research outputs found

    Impacts on coralligenous outcrop biodiversity by a dramatic coastal storm

    Get PDF
    Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006-2008) and after the impact (2009-2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change

    Experimental evidence of synergistic effects of warming and invasive algae on a temperate reef-builder coral

    Get PDF
    In the current global climate change scenario, stressors overlap in space and time, and knowledge on the effects of their interaction is highly needed to understand and predict the response and resilience of organisms. Corals, among many other benthic organisms, are affected by an increasing number of global change-related stressors including warming and invasive species. In this study, the cumulative effects between warming and invasive algae were experimentally assessed on the temperate reef-builder coral Cladocora caespitosa. We first investigated the potential local adaptation to thermal stress in two distant populations subjected to contrasting thermal and necrosis histories. No significant differences were found between populations. Colonies from both populations suffered no necrosis after long-term exposure to temperatures up to 29 °C. Second, we tested the effects of the interaction of both warming and the presence of invasive algae. The combined exposure triggered critical synergistic effects on photosynthetic efficiency and tissue necrosis. At the end of the experiment, over 90% of the colonies subjected to warming and invasive algae showed signs of necrosis. The results are of particular concern when considering the predicted increase of extreme climatic events and the spread of invasive species in the Mediterranean and other seas in the future

    Structure and biodiversity of coralligenous assemblages dominated by the precious red coral Corallium rubrum over broad spatial scales

    Get PDF
    Data on species diversity and structure in coralligenous outcrops dominated by Corallium rubrum are lacking. A hierarchical sampling including 3 localities and 9 sites covering more than 400 km of rocky coasts in NW Mediterranean, was designed to characterize the spatial variability of structure, composition and diversity of perennial species inhabiting coralligenous outcrops. We estimated species/taxa composition and abundance. Eight morpho-functional groups were defined according to their life span and growth to characterize the structural complexity of the outcrops. The species composition and structural complexity differed consistently across all spatial scales considered. The lowest and the highest variability were found among localities (separated by >200 km) and within sites (separated by 1-5 km), respectively supporting differences in diversity indices. The morpho-functional groups displayed a consistent spatial arrangement in terms of the number, size and shape of patches across study sites. These results contribute to filling the gap on the understanding of assemblage composition and structure and to build baselines to assess the response of this of this highly threatened habitat to anthropogenic disturbances

    Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species

    Get PDF
    Stochastic perturbations can trigger major ecosystem shifts. Marine systems have been severely affected in recent years by mass mortality events related to positive thermal anomalies. Although the immediate effects in the species demography affected by mortality events are well known, information on the mid- to long-term effects at the community level is much less documented. Here, we show how an extreme warming event replaces a structurally complex habitat, dominated by long-lived species, by a simplified habitat (lower species diversity and richness) dominated by turf-forming species. On the basis of a study involving the experimental manipulation of the presence of the gorgonian Paramuricea clavata, we observed that its presence mitigated the effects of warming by maintaining the original assemblage dominated by macroinvertebrates and delaying the proliferation and spread of the invasive alga Caulerpa cylindracea. However, due to the increase of sediment and turf-forming species after the mortality event we hypothesize a further degradation of the whole assemblage as both factors decrease the recruitment of P.clavata, decrease the survival of encrusting coralligenous-dwelling macroinvertebrates and facilitate the spreading of C. cylindracea

    The optimal sampling design for littoral habitats modelling: A case study from the north-western Mediterranean

    Full text link
    Species distribution models (SDMs) have been used to predict potential distributions of habitats and to model the effects of environmental changes. Despite their usefulness, currently there is no standardized sampling strategy that provides suitable and sufficiently representative predictive models for littoral marine benthic habitats. Here we aim to establish the best performing and most cost-effective sample design to predict the distribution of littoral habitats in unexplored areas. We also study how environmental variability, sample size, and habitat prevalence may influence the accuracy and performance of spatial predictions. For first time, a large database of littoral habitats (16,098 points over 562,895 km of coastline) is used to build up, evaluate, and validate logistic predictive models according to a variety of sampling strategies. A regularly interspaced strategy with a sample of 20% of the coastline provided the best compromise between usefulness (in terms of sampling cost and effort) and accuracy. However, model performance was strongly depen upon habitat characteristics. The proposed sampling strategy may help to predict the presence or absence of target species or habitats thus improving extensive cartographies, detect high biodiversity areas, and, lastly, develop (the best) environmental management plans, especially in littoral environments

    Re-shifting the ecological baseline for the overexploited Mediterranean red coral

    Get PDF
    Overexploitation leads to the ecological extinction of many oceanic species. The depletion of historical abundances of large animals, such as whales and sea turtles, is well known. However, the magnitude of the historical overfishing of exploited invertebrates is unclear. The lack of rigorous baseline data limits the implementation of efficient management and conservation plans in the marine realm. The precious Mediterranean red coral Corallium rubrum has been intensively exploited since antiquity for its use in jewellery. It shows dramatic signs of overexploitation, with no untouched populations known in shallow waters. Here, we report the discovery of an exceptional red coral population from a previously unexplored shallow underwater cave in Corsica (France) harbouring the largest biomass (by more than 100-fold) reported to date in the Mediterranean. Our findings challenge current assumptions on the pristine state of this emblematic species. Our results suggest that, before intense exploitation, red coral lived in relatively high-density populations with a large proportion of centuries-old colonies, even at very shallow depths. We call for the re-evaluation of the baseline for red coral and question the sustainability of the exploitation of a species that is still common but ecologically (functionally) extinct and in a trajectory of further decline

    Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species

    Get PDF
    The differential response of marine populations to climate change remains poorly understood. Here, we combine common garden thermotolerance experiments in aquaria and population genetics to disentangle the factors driving the population response to thermal stress in a temperate habitatforming species: the octocoral Paramuricea clavata. Using eight populations separated from tens of meters to hundreds of kilometers, which were differentially impacted by recent mortality events, we identify 25 degrees C as a critical thermal threshold. After one week of exposure at this temperature, seven of the eight populations were affected by tissue necrosis and after 30 days of exposure at this temperature, the mean % of affected colonies increased gradually from 3 to 97%. We then demonstrate the weak relation between the observed differential phenotypic responses and the local temperature regimes experienced by each population. A significant correlation was observed between these responses and the extent of genetic drift impacting each population. Local adaptation may thus be hindered by genetic drift, which seems to be the main driver of the differential response. Accordingly, conservation measures should promote connectivity and control density erosion in order to limit the impact of genetic drift on marine populations facing climate change

    Habitat features and their influence on the restoration potential of marine habitats in Europe

    Get PDF
    To understand the restoration potential of degraded habitats, it is important to know the key processes and habitat features that allow for recovery after disturbance. As part of the EU (Horizon 2020) funded MERCES project, a group of European experts compiled and assessed current knowledge, from both past and ongoing restoration efforts, within the Mediterranean Sea, the Baltic Sea, and the North-East Atlantic Ocean. The aim was to provide an expert judgment of how different habitat features could impact restoration success and enhance the recovery of marine habitats. A set of biological and ecological features (i.e., life-history traits, population connectivity, spatial distribution, structural complexity, and the potential for regime shifts) were identified and scored according to their contribution to the successful accomplishment of habitat restoration for five habitats: seagrass meadows, kelp forests, Cystoseira macroalgal beds, coralligenous assemblages and cold-water coral habitats. The expert group concluded that most of the kelp forests features facilitate successful restoration, while the features for the coralligenous assemblages and the cold-water coral habitat did not promote successful restoration. For the other habitats the conclusions were much more variable. The lack of knowledge on the relationship between acting pressures and resulting changes in the ecological state of habitats is a major challenge for implementing restoration actions. This paper provides an overview of essential features that can affect restoration success in marine habitats of key importance for valuable ecosystem services

    Sublethal effects of heavy metal contamination on marine sponges: Responses at different biological levels

    No full text
    [eng] Many antrophic activities release pollutants to the marine environment. Among them heavy metals are of great importance, since they are conservative pollutants, which can be accumulated through trophy chains. Sometimes, the liberation to the marine waters is acute and drastic, leading to massive mortalities. However, more often, the liberation is by means of low and chronic concentrations. The main objective of the present thesis is to analyze the sponge responses in face to sublethal concentrations of heavy metals and to determine, if it is possible, whether they can be used as biomonitors of such kind of pollution. First, we have studied their availability to accumulate havey metals in both, temporal and especial scales. And then, by means of the use of different biomarkers, to analyze the sublethal effects of heavy metals on sponges at different levels of biological organization, from molecules to populations. The present thesis has been performed by means of experiments in situ and at the laboratory, in order to elucidate heavy metal accumulation patterns and their effects depending on the specie and metal considered.[cat] "Efectes subletals de la contaminació per metalls pesats en esponges marines: Respostes a diferents nivells d'organització". Moltes activitats antròpiques alliberen contaminants en el medi. Entre els contaminants hem de destacar els metalls pesants, ja que són contaminants conservatius y que s'acumulen a través de les xarxes tròfiques. En alguns casos la alliberació dels contaminants en el medi es dona de forma aguda i dràstica, el què pot provovar mortalitats massives. De totes formes, de forma general l'alliberació al medi dels metalls pesants es dóna a baixes concentracions i de forma crónica. L'objectiu principal d'aquesta tesis és analitzar les respostes de les esponges a concentracions subletals de metalls pesants i determinar la seva utilitat com a biomonitors d'aquest tipus de contaminació. En primer lloc, s'ha d'estudiar la capacitat de les esponges per acumular metalls pesants tant a una escala temporal com espaial. En segon lloc, mitjançant l'ús de diferents biomarcadors, analitzar els efectes subletals dels metalls en les esponges, a diferents nivells d'organització biológica, desde les molècules fins a les poblacions. Aquesta tesis s'ha dut a terme mitjançant experiments que convinen aproximacions in situ i en el laboratori per tal de compendre de millor maners els models d'acumulació i els seus efectes en funció de l'espècie i el metall considerat
    corecore