141 research outputs found
Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle
Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006-November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies similar to 0.1-1.0 MeV), in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L = 6 and L = 22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (V-SW = 500-1000 km s(-1)) compared to low-speed solar wind (V-SW = 100-400 km s(-1)). These results have important implications for understanding (a) how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b) if the magnetotail is a source or a sink for the outer electron radiation belt
Recommended from our members
Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments
The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons
Manipulating Anger Does Not Affect Risky Decision Making
To date, multiple studies have examined the influence of negative mood on performance on behavioral decision-making tasks. Self-reported negative mood was inconsistently associated with subsequent decision making, and a similar inconsistent pattern was seen when negative mood was manipulated in the study session. The present study sought to examine how deliberately inducing a particular negative mood, anger, would affect risky decision making. College student participants reported their political beliefs, then were randomly assigned to one of several mood manipulation conditions (political anger, anger, sadness, fear, control) prior to completion of standard behavioral risky decision-making tasks including the Iowa Gambling Task, Game of Dice Task, Balloon Analogue Risk Task, and Columbia Card Task. Results indicated an increase in negative mood in the anger condition following the study manipulation, but only minimal effects of negative mood on risky decision making across tasks. Future assessments of mood and decision making should address multiple negative mood affects in addition to manipulation techniques in order to determine if a specific mood and/or manipulation is contributing to an individuals’ risky decision making
Recommended from our members
Possible satellite-based observations of the 1997 Leonid meteoroids
The Block IIA GPS satellites are equipped with a sensor designed to detect electromagnetic transients. Several phenomena will produce triggers in this sensor. They include earth-based electromagnetic transients such as lightning and two space-based phenomena--deep dielectric discharge and meteoroid or hyper-velocity micro-gram particle impact (HMPI). Energetic electrons in the GPS environment cause the deep dielectric charging. HMPIs cause triggers through the transient electric fields generated by the ejecta plasma. During the 1997 Leonid passage the energetic particle fluxes were very low. In the presence of such low fluxes the typical median trigger rate is 20 per minute with a standard deviation of about 20 per minute. Between 0800 UT and 1200 UT on November 17, 1997, the sensor on a specially configured satellite observed trigger rates more than 10 sigma above the nominal median rate. Sensors on other Block IIA GPS satellites also observed excess triggers during November. Detection is enhanced when the sensor antenna is oriented into the Leonid radiant. While many questions persist the authors feel that it is likely that the excess events during the November interval were caused by the close approach of the satellites to the Leonid meteoroid path
The 1983 tail-era data series. Volume 3: Geosynchronous particle measurements
Geosynchronous particle measurements are presented for comparison with same-scale plots of ISEE 3 plasma and field data. Shown for each day are electron and proton fluxes measured with the low-energy-range electron and the low-energy-range proton detectors of the Los Alamos Charged Particle Analyzer. This instrument has flown aboard several geosynchronous orbit satellites, including the three spacecraft from which the presented data were obtained. The presented data are 5-min averages of the integral flux in each of several energy channels
The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud
In January 1997 a large fleet of NASA and US military satellites provided the most complete observations to date of the changes in \u3e2 MeV electrons during a geomagnetic storm. Observations at geosynchronous orbit revealed a somewhat unusual two-peaked enhancement in relativistic electron fluxes [ Reeves et al., 1998]. In the heart of the radiation belts at L ≈ 4, however, there was a single enhancement followed by a gradual decay. Radial profiles from the POLAR and GPS satellites revealed three distinct phases. (1) In the acceleration phase electron fluxes increased simultaneously at L ≈ 4–6. (2) During the passage of the cloud the radiation belts were shifted radially outward and then relaxed earthward. (3) For several days after the passage of the cloud the radial gradient of the fluxes flattened, increasing the fluxes at higher L-shells. These observations provide evidence that the acceleration of relativistic electrons takes place within the radiation belts and is rapid. Both magnetospheric compression and radial diffusion can cause a redistribution of electron fluxes within the magnetosphere that make the event profiles appear quite different when viewed at different L-shells
Recommended from our members
New results in high beta MHD theory
New results are described in the following three areas of high MHD theory: (1) equilibrium and stability of diffuse high-..beta.. stellarators, (2) MHD equilibrium and stability of minimum-B mirror traps, and (3) simulation of simple and reversed field mirror machines
Synchronous motion of two vertically excited planar elastic pendula
The dynamics of two planar elastic pendula mounted on the horizontally
excited platform have been studied. We give evidence that the pendula can
exhibit synchronous oscillatory and rotation motion and show that stable
in-phase and anti-phase synchronous states always co-exist. The complete
bifurcational scenario leading from synchronous to asynchronous motion is
shown. We argue that our results are robust as they exist in the wide range of
the system parameters.Comment: Submitte
Recommended from our members
Relativistic electrons in the outer-zone: An 11 year cycle, their relation to the solar wind
We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June 1994. It is shown that the higher energy electrons fluxes (E > 300 keV) displayed a cycle of {approx}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners
- …