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New results are degcribed in the following three areas of high MHD
theory: (1) equilibrium and stability of diffuse high-B stellarators, (2)
MHD equilibriu. and stability of minimum-B mirror traps, and (3) simulation

of simple and reversed field mirror machines.

I. High Beta_ Stellarator Studies (LASL)

*Hork performed under the auspices of the U.S. Department of Energy.
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Both analytic and numerical studies have been performed which
demonstrate the existence of high-f stellarator equilibria and make .

practical comnnec. 1th experiments.

A Analytic Stu 2

An analytic formulation has been derived for calculating equilibria in
a diffuse high-B stellarator configuration. Although analytic shavp
boundary equilibria have been known for some time,[l-4] the extension to
diffuse profiles is non-trivial. The reason for this is associated with the
misleading intuition from sharp boundary theory which suggests that diffuse
high~-8 stellarator equilibria could be obtained by expansion about a
straight cylindrically symmetric €-pinch field, B(r)e,. Expansions of this
type turn out to be incompatible with toroidal periodicity constrairts and

no such equilibria exist.

The expansion described here overcomes this difficulty by considering

the basic O-pinch field to be of the form B(r,0)e that 1s, one must

o
consider the leading order system to consist of noncircular flux surfaces
with finite toroidal shifts. Under this assumption diffuse high-8

stellarator equilibria can be found.

The leading order field is the O-pinch field just described. The first
order fields are a combination of helical fields, each one characterized by
20 + hz. In principle there can be an arbitrary number of induced and
applied helical fields with different £ values, but all with the same pitch

number h. In practic:, for well confined equilibria, two and only two
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helical fie'’ds (L and 2+1) can be applied. #1so, no purely transverse
fields are allowed in first order. The helical fields are determined from a
potential function ¢, which satisfies a second order partial differential
equation with B(r,08) appearing in the coefficients. Toroidal effects are
first assumed to enter in second ~rder. To calculate the second order
fields, a periodicity condition (resulting from z independent terms) must be
satisfied. This condition imposes a second constraint between ¢ and B.
Thus, the problem of finding high-B stellarator equilibria can be cast in
the form of two nonlinear, coupled partial differential equations for the

unknowns 9 and B.

These equations are given by

v,e 2
1 h“¢
Wwiig) -1 W

4
a

19,012 + n2[01% = 6(8) - =2 (1-8) £ cosd (2)

where B, 1s the applied 06-pinch field, B = 1 - Bz(r.e)/BE. R is the major
radius of the torus, G(8) is an arbictrary free function and the helical
field is determined by B, = V,¢/B(r,8). At r = 0, ¢ and B must be regular.
At the outer boundary, r = bll+] Ay cos(28+hz)] there ie a shaped conducting

shell on which n*B = 0.
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Equations (1) ard (2) have been solved analytically in the small hr
limit for two cases: (1) small, but finite B and A, ~ A} ~ 4, and (2) finite
B and 8,, B, << A,. The result is a diffuse anzlog of the well known sharp
boundary equilibrium relationship corresponding to zero toroidal shift. The
consequences of these analytic calculntions are discussed 1in conjunction

with the numerical studies in Sec. IB.

Finally, a comparison has been made with the low-B stellarator. In
both cases, helical fields are required to provide closed £flux surfaces.
However, in a high-f stellarator the toroidal drift force is balanced by the
interaction of two helical fields; %, %+l. In a low-B stellarator a single
helical field suffices. Here, the toroidal drift force is balanced, not by
the helical fields, but by the interactioun of a smail vertical field with

the small induced toroidal dipole current.

B. Numerical Studies

Numerical solutions of the diffuse, high~8 stellarator equilibrium
problem are also presented, which are obtained by solving finite difference
approximations to the nonlinear, time-dependent equations describing ideal,
magnetohydrodynamic flow in three dimensions as described i1in [5,6]. Such
solutions have provided answers to practical design questions associated
with existing experiments, which arise because, in contrast with tokamaks or
even low-f stellasrators, equilibria exist only for numerically correct

helical field amplitudes.
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Equilibriz have been computed for diffuse profile plasmas with
parameters corresponding to existing experinents. Similarly to the sharp
bouncary theory, the numerical calculations and the asymptotic theory
described In Sec. IA give a diffuse equilibrium relation for 2&=]1,0 which
scales as hRBl_oBl_llBg = g,(B), and for £=1,2 as RBl_lBl_zlaBg = g;(8),
vhere A, =B, /2B,, and d,45 = (By,/B,) (b/a)l-l. and the By are evaluated
at the plasma redius, a. For Bl/Ba << 1, the numerical results with £=1,0
are compared in Fig. 1 with analytic theory. The numerical results were
computed for a Gaussian-like profile and the analytZic theory for the
profiles 8 = Ba/[1+(ria)4]“. n = 1,2. Both the analytic and numerical
results show significant differences from the sharp boundary theory

iadicating that the equilibrium is sensitive to the profile.

The numerical calculations of diffuse equilibriz for ha and B,_/Ba
finite, as in the Scyllac and Isar experiments, give similar scaling, and
have been compared with experimental results.[7,8] For example, when
adjustments to the equilibrium fields of the Scyllac feedback sector were
made to compensate for the diffuse nrofile effects predicted by theory, an

increare in confinement time from 25 us to 45 us was observed.[7]

An Isar-like configuration[9)] with £ = 0,1,2 fielda has also been
studied, because of the potential for reducing the dependence of the
equilibrium fields on B by using three helical fields. As a result of
appropriately combining them, the c(ifferant dependence on B of the
stellarator force, EIO' (produced by the interaction ot t = 0 and £ = 1
fields) and that of E;,, (produced by the £ = 1 and ¢ = 2 fields) cancels
the net B dependence without cancelling the total EIO + §1z force. However,
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the interaction of £ = 0 and £ = 2 fields also produces a force, EOZ' with
L = 2 gymmetry and no axial dependence. Numerical calculations for a
straight system with parameters such that F;q + F;5 = 0 indicate that Fg,
results in large, unbounded, and therefore unacceptable deformations of the
plasma as shown in Fig. 2. This defcrmation can be suppressed by applying a

relatively large [~ (AOAZ)I/Z] vertical fileld.

Finally, wall stabilized ¢ . oria have been calculated with plasma to
wall ratic, b/a = 2. All diagnostics indicate an approach to stationary
equilibrium in contrast to the unstable motion typically observed in cases

with b/a > 4.

In summary we now have obtained analytic and numerical
high-B-stellarator equilibria whose properties and scaling can be related to

experiments and earlier theory.
II. MHD Equilibrium and Stability of Minimum-B Mirror Traps (LLL

In a general high-beta guiding-center MHD equilibrium of an anisotropic
minimum-B mirror-trapped plasma, stability is determined by the sign of the
Krugkal-Oberman[l0] energy variation. For near-marginally-stable flux-
localized perturbations, and within a positive factor, the energy variation

is(1l1]

MW = far {(h/27B2) (Vy+uva)2(bV4)2

+ [T/B)gb x (V¥u¥a) + 04} 3
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vhere $(2) is the amplitude of the perturbation whose principal
displacements are along b x (Vyv+uVa), u is an arbitrary constant, and (¥,a)
re flux coordinates. The trap is supposed omnigenous,[l2] allowing the
pressures to be taken to depend only upon B and the principal flux
coordinate V. For a well-designed and well-injected mirror trap, the
quantities h(¥,3), 9oh/3¥, and T(V,B) are all positive, where h =
B+4wB~l(2,-p,), T = (-43/B)[(3p,/3¥) + (/B)(3h/3B)~1(ap,/3v3]. Likewise,
F >0, where F = B~2[h2(30/38)"! + 12mp, -(82 + 8p,)~1(82-4mp )], and
0 <0< (F/2mB)[<*bx(V% + uVa)]?, where b = B7!B and < = b°Vb. Hence
necessary and sufficient conditions for the stability of flux~localized
perturbations are given by the nonexistence of solutions of tle
Euler-Lagrange equations along a line of force which are obtained ty use cf
the limiting forms of © 1in AW. Nevertheless, Eq. (3) may still be difficult

to apply.

Under circumstances of considerable interest to the mirror orogram, 1t
is frequently assumed that the principal radial de-sity gradilents can be
relegated to a small boundary layer, (l-€)¥ < ¢ < (1+€)¥, near the surface
of the plasma. When € 1s very small, the angular flux coordinate & can
exhibit rapid variation from flux surface to flux surface, Va*Vy = 0(8-1),
causing considerable difficulty with the numerical analysis. Thus new
analytic procedures have been derived for the solution of equilibrium in
terms better suited to the examination of stabilit’ when € 1is small.

Stringent stability boundaries are found.
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In small-curvature straight-axis mirror traps, conversion of the ustal

c¢ylindrical coordinates (r,0,z) into a mixed coordinate set (¥,0,z) permits

the introduction of a single function P(Yy,0,z), the e¢oordinate potential,

wvhich fully defines the finite beta geometry. Thus, 1f partial derivatives

in (¥,9,2) coordinates are denoted by subscripts, then

2

82 + gmp, = B2,

%r -Pe,G-Z'ﬂ'BPw, (4)
where B, (z) is the known induction of the vacuum configuration om -xis. If

£ = (h/B)b*Vb = (47h/cB?)jb, then the equilibrium equation[l2] Bg’ =

- Tsongw may be rewritten

(h/ag) [RgR*/2R)y, = Ry(R"/2R)g = (2Ra,/ag),]
- - f: d2(T/ag) {Rg(R*/2R), - R,(R*/2R)g - (2Ra,/ag),

+ [R(a /ag)? + ®*)2/4R]}, (5)

where R* = b°VR = R, - (a,/ay)Rg, and we have used the boundary condition
that £ * 0 as 2z + ==, The scalar function c(z) measures the quadrupole
induction in the interior cf the plasma (where the pressures are independent
of ¢), B = Be, - (r/2)(dB/dz)g9 + (r/Z)B(dc/dz)(grcoszo - egnin 26).
Likevise, P = (y/27B) arctan (e® tan®) in the interior. When B = 8ﬂpl/33 is
small, or at arbitrary B but near the inner boundary layer surface, Eq. (5)

admits an analytic solution,

ay - (%J sin 2a f; dz, {(coah ¢ = ginh ¢ cos 2(:)'1
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|” dz,(7/B) (X sinh ¢ - 2Y cosh o)}, (6)
z)

where X = (dc/dz)2 + B~2(dB/dz)? - 2(d/dz) (B~1dB/dz) and Y=B~l(dB/dz) (dc/dz)

- dzc/dzz. with X and Y both evaluated on axis.

For large-aspect-ratio (small curvature) configurations, the most
unstable perturbations satiefy £ = b x V¢,[13] and the energy variatior

becomes([11]

AW = (8%)~1 [ dydade {(h/27B2)[ (BD#/DY + a BDé/Da)* Vy + ag(BD$/Da)’ Ve]2

+ M(BD$/Da)? - 25 (BD¢/Da) (BDS/DY + a@Dé/Da)’},  (7)

where V¢ = (D$/DY)VY + (D¢/Da)Va + ¢'E. The function E va~ishes at low B o

near the inner boundary layer surface, and in this same regime
M = (Tag/B) [(a,/ag)? + (R*/2R), + (R*/2R)% + (BR"/2aq)(ag/BR)"]
- [®m/B) Rg/2R)ag]” T (R Rg/Rap)ay. (8)
The system is flute unstable if f M d& < 0, unless line tied. In any event

ballooning 1is also possible for perturbations |[BD¢/DY + a¢BD¢/DuI «

|BD¢/Da|, provided solutions exiast to the Euler-Lagrange equation

[(hu%/dlnzk)u']' - Mu = 0, (9)

vhere u = -BD¢/Da. Thus, the nonexistence of solutions of Eq. (9)
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necessary for stability. It 1is also sufficient, as can .e shown by the

reduction of an earlier condition due to Newcon®.[13]

When B/¢ is large, the last term of Eq. (8), which is 0(8%/z"*,
dominates the cther terms, which are 0(B8/¢). Hence, in wellrs of baseball
symmetry. 1instability occurs away from the symmetry planes when 6/€ exceads
a number of order unity. Thus, unless stabilized by finlte orbit effects
(vhich might per.ait the existence of a boundary layer of thickness
comparable to a typical cyclotron orbit diameter), it appears that
flat-topped pressure profiles are inconcistent with the achievement of high
beta. 1Insrability is associated with the presence of geodesic curvature,
x*b x Vy # 0. In turn, j°b does not vanish everywhere. Drift currents
accumulate charge at one point on a line of force which must th2n flow off

at another point.

IIT. Simulation of Simplie and Reversed Field Mirror Machine (NYU)

The problem ccncidered 1is the buildup of a mirror confined plasma
including a transition with field reversal. A strong theoretical indication
has been given that field reversal will occur "naturally” in a plasma
without injection[l4] 1f the mirror coils are properly programmed. To
confirm this requires simulation with a transport code which includes the
capability of following changes in topology. We have constructed an axially
symmetric, macroscopic code which 1is a modification of earlier, very
efficient transport codes for the Doublet[l15] and Divertor({l6]. Numerical

resulte 1in the adiabatic limit (zero resistivity and heat conductivity) are
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presented here. PResults with full transport and energy and mass sources

wili be presented elsewhere.

The model 1includes '"classical" plasma diffusion arnd heat flow. We
recall[l7] that, in a symmetric mirror machine there is no skin effect. The
Grad-Hogan formulation [18,19) 1s followed in order to eliminate the
convection velocity and in this way rigorously separate out 1-D, transport
from 2-D gecmetry evolution. Proper choice of independent and dependent
variables([19], [20] allows the 1-D transport to take thg form of a standard
diffusion system with s8econd derivatives explicitly shown, allowing

numerical stability and accvracy to be determined.

The independent (l1-D) variable is taken to be the mass, M = fpdV. We
write ¢ for 3¢/ and dé/dt holdirg M fixed (¢° = 34/3V). Conservation of

mass, flux, and energy (with V as independent variable),

. vie o AV
pt+(pu) =0 s U = oue*dS -d—t

b + Uy = nadF ,  F= (7)), K= <|W?/r> (10)

2
pp + Up® + 2pU° = (A,T7)" + nee2>F2 , A, = A(T)/w?t

are rewritten in terms of M,

oM) = Y=y /p , u(M) = p/p2
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%% = (n<r2>F)°  , F = p(Rpo)® (11)

au oL o)t + ner?>r/p?
dt ()

vhere the auxiliary variable p is obtained from the pressure balance (Ky’)”
= - dp/av, |

p[Ro2 + 2u] + p[0(Ra)* + ul = 0

2
-— O dK }
(Ko2+2u)1/2

1
il R e

The ro:ond derivatives, #, in (11) are eliminated explicitly in terms of 8
. and i. The quantities o and y diffuse; p, etc., are carried along. The
eigenvalues of the 2x2 matrix of second derivatives (diffusion coefficients,

dimensionally Hz(t)) are

A= -;- (A, + oAp) % 2 + o222 - zspx,xollfz

where

Bm—2b o f . 0<Bcl
2u+Ko? p+ 3 <2>

Ao - nK<r2>pza
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If the energy equation 1s replaced by a simple source (as in a "Flux
Conserving Tokamak"), du/dt = Q, the eingle, classical diffusion
coefficient, A = A, is obtained. To be precise, no ekin effect 18 present
with a plasma-vacuum interface. But a limiter, scraping off plasma, will
give a very slowly diffusing skin at the classical diffusion rate Ao rather

than at the normal skin rate Ao/B.

Figure 3 shows condensed information of an adiabatic rum in whica the
mirror ratio is Iincreased in steps. The current profiles (precisely, F =
<J/r>), originally flat, are deformed as shown. As in a Doublet [15], there
is a current peak at the separatrix. The magnetic field profiles on axis

are also shown.
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Fig. 1. The results of numerical equilibrium calculations are
compared with analytic theory. The triangles and circles denote
numerical equilibria with sharp boundary and Gaussian-like plasma
profiles respectively. .,
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Fig. 2. The amplitude of the plasma,responses §, , where n is the wave
number in units h, to the simultaneods application of =0, =1, and =2
fields with n=l. Note that §,, the elliptical deformation of the column
in response to F.,, is largerzothan 621. the response to the applied =2

field and still growing. Continued growth will bring the plasma into contact
with the wall.



