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The global response of relativistic radiation belt electrons 
to the January 1997 magnetic cloud 

G. D. Reeves, • D. N. Baker, 2 R. D. Belian, • J. B. Blake, '• T. E. Cayton, • J. F. Fennell, '• 
R. H. W. Friedel, • M. M. Meier, • R. S. Selesnick, 3 and H. E. Spence • 

Abstract. In January 1997 a large fleet of NASA and US 
military satellites provided the most complete observations to 
date of the changes in >2 MeV electrons during a geomagnetic 
storm. Observations at geosynchronous orbit revealed a 
somewhat unusual two-peaked enhancement in relativistic 
electron fluxes [Reeves et al., 1998]. In the heart of the 
radiation belts at L--4, however, there was a single 
enhancement followed by a gradual decay. Radial profiles from 
the POLAR and GPS satellites revealed three distinct phases. (1) 
In the acceleration phase electron fluxes increased 
simultaneously at L--4-6. (2)During the passage of the cloud 
the radiation belts were shifted radially outward and then relaxed 
earthward. (3) For several days after the passage of the cloud the 
radial gradient of the fluxes flattened, increasing the fluxes at 
higher L-shells. These observations provide evidence that the 
acceleration of relativistic electrons takes place within the 
radiation belts and is rapid. Both magnetospheric compression 
and radial diffusion can cause a redistribution of electron fluxes 

within the magnetosphere that make the event profiles appear 
quite different when viewed at different L-shells. 

Introduction 

Relativistic electron events have been been studied since the 

dawn of the space age yet their origin and the acceleration 
process that produces them remain poorly understood. The most 
commonly-applied model for the relativistic electron 
acceleration process is the so-called "recirculation" model 
[Nishida, 1976]. Although the recirculation model was 
developed to explain energization in Jupiter's magnetosphere 
it has also been widely applied to the Earth's magnetosphere 
and has been the standard model for relativistic electron events. 

In this model it is thought that substorm injections produce a 
'seed population' which can further gain energy through 
betatron acceleration as they diffuse across magnetic field lines 
to lower altitudes [e.g. Baker et al., 1997]. In order to account 
for the observed increases in energy the recirculation model 
proposes that the electrons undergo betatron acceleration 
several times by scattering at low altitudes onto magnetic field 
lines that are again connected to the outer region of the 
radiation belts thus 'recirculating' the electrons. 

•Space and Remote Sensing Sciences, Los Alamos National 
Laboratory, Los Alamos, New Mexico. 

2Laboratory for Space and Atmospheric Physics, University of 
Colorado, Boulder, CO. 

3The Aerospace Corporation, Los Angeles, CA. 
4Center for Space Physics, Boston University, Boston, MA. 

Copyright 1998 by the American Geophysical Union. 

Paper number 98GL02509. 
0094-8534/98/98GL-02509505.00 

Single satellite measurements showed many characteristics 
that agreed with the predictions of this model. Primary among 
them was the observations from geosynchronous satellites 
which showed that the relativistic electron fluxes tended to 

peak 2-3 days after the passage of the solar wind disturbance 
and the initial injection of the seed population [e.g. Paulikas 
and Blake, 1979]. 

A second class of events was discovered more recently. The 
CRRES satellite observed the creation of a new ultrarelativistic 

(E>15 MeV)electron radiation belt which was produced in a 
matter of minutes due to the passage of a magnetic shock 
through the magnetosphere [Blake et al., 1992; Li et al., 1993; 
Hudson et al., 1997]. The January 1997 event does not appear 
to be consistent with either of these proposed acceleration 
mechanisms. 

The January, 1997 Event 

In January 1997 a coronal mass ejection (CME)produced a 
magnetic cloud that impacted the Earth's magnetosphere. The 
solar wind conditions and the magnetospheric energetic 
particle response measured by five geosynchronous satellites 
has been described by Reeves et al. [1998]. Strong substorm 
activity, development of a storm-time ring current, and 
enhancement of radiation belt electrons were all observed. 

The event was first felt in the Earth's magnetosphere at 
about 0100 UT on January 10 when a shock leading the coronal 
mass ejection hit the magnetosphere. Following the shock the 
interplanetary magnetic field (IMF) slowly rotated from 
strongly southward to strongly northward (approximately 
+20 nT) over a period of about one day, changing sign around 
1800 UT on January 10. In addition the coronal mass ejection 
contained a region of high plasma density which compressed 
the magnetosphere and increased the magnetic field strength in 
the radiation belts. The compression lasted from about 
1200 UT on January 10 to about 1200 UT on January 11 and 
peaked at about 0200 UT on January 11. 

The relativistic electron enhancement began shortly before 
1200 UT on January 10, before the beginning of the 
magnetospheric compression, and while the energy input into 
the magnetosphere was still quite strong. Figure 1 shows the 
temporal flux profiles of relativistic electrons, with energies 
greater than approximately 2 MeV, from January 8 to 1 8. 
Panel A shows data from five geosynchronous satellites from 
the study by Reeves et al. [1998]. In that paper we noted the 
two-peaked response of the geosynchronous relativistic 
electron fluxes. The first peak occurred between 1200 UT on 
January 10 and 1200 UT on January 11 in close correspondence 
to the times when the high-density solar wind had compressed 
the magnetosphere. The second peak is a broad peak with 
maximum fluxes observed on January 15. This second peak has 
the same general characteristics as the events reported by 
Paulikas and Blake and others. 
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January 1997 Relativistic Electron Event 
as seen b2r LANL, GOES, GPS & POLAR 
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Figure l. Temporal profiles of relativistic electron fluxesß 
Profiles are shown for geosynchronous orbit (top panel), at 
L=6.6 overlaid on the geosynchronous data (middle panel), and 
at L--4.6 near the peak of the electron belts (bottom panel). The 
energies plotted are integral channels with thresholds 1.6 MeV 
for GPS, 1.74 MeV for POLAR, 1.8 MeV for LANL, and 2 MeV 
for GOES. 

To further investigate the origin and acceleration of 
relativistic electrons we examined data from six additional 

satellites that were simultaneously measuring the fluxes of 
>2 MeV electrons during this event. Those satellites were 
POLAR, SAMPEX, HEO, and the GPS Navstar-24, -33, and -39 
satellites. The lower two panels, B and C, in Figure 1 show data 
from the three GPS satellites and from POLAR for two different 

L-shells. (SAMPEX and HEO had similar profiles but are not 
shown for simplicity.). 

Fluxes measured off the magnetic equator but at the same L 
are assumed to be roughly equal. Figure 1-B shows that this is 
the case here. The GPS satellites are in a 12 hour, 4.1 R E, 
circular orbit which takes them through the peak of the 
radiation belts at a point near the magnetic equator. POLAR is 

in an 18 hour, 2x9 RE, elliptical orbit with perigee nearly 
above the north pole. Although POLAR and GPS cross L=6.6 at 
relatively high magnetic latitudes the fluxes have nearly the 
same temporal profile as seen at geosynchronous orbit, near 
the magnetic equator. This match gives us confidence to 
combine data from different L-shells, measured by different 
satellites into a single coherent picture 

Figure I-C again shows data from POLAR and the three GPS 
satellites but now for L=4.6 which lies near the expected peak 
of the radiation belts. It is apparent that the flux profiles at 
L=4.6 are distinctly different that the profiles at L=6.6. 
Although there is some evidence of a peak at L=4.6 between 
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Figure 2. Radial profiles of relativistic electron fluxes. Top 
panel: GPS fluxes from 1108 to 2400 UT on January 10 show 
that acceleration occurs throughout the radiation belts (L=4-7) 
in approximately 12 hours. Middle panel: Two POLAR passes 
show a shift of the radiation belt profiles as the magnetic field 
decreases following the passage of the high-density solar wind. 
Bottom panel: Four subsequent POLAR passes show the fluxes 
increasing outside L=5.5 while they remain relatively stable 
inside L=5.5. 
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acceleration of electrons to relativistic energies occurs in the 
heart of the radiation belts probably through a localy operating 
process. 

During magnetospheric compressions and decompressions, 
the entire radiation belts can shift radially on time scales of 
hours. The outward and inward shifts are probably caused by the 
compression and de-compression of the magnetosphere 
associated with changes in solar wind dynamic pressure. Large 
magnetospheric compressions do not occur in all storms 
though and therefore most events are not expected to produce a 
double-peaked response in the outer radiation belts. 

The apparent shift observed in the January 1997 event is 
also notable because it is opposite to that expected if all three 
adiabatic invariants are conserved. Conservation of the third 

adiabatic invarient implies that magnetic de-compression 
should move particles outward to conserve the total magnetic 
flux in a drift orbit while we observe the opposite. The radial 
shifts seen in the January 1997 storm are, however, consistent 
with conservation of the first two invariants and it is 

reasonable to expect the third invarient was not conserved in 
this event because of the large and rapid changes in the 
geomagnetic field. 

Although these observations answer several long-standing 
questions in magnetospheric physics they leave unanswered 
two important questions for further study: First, what is the 
physical mechanism that is responsible for the initial 
acceleration of the relativistic electrons in the radiation belts? 

and Second, what solar wind conditions are necessary, or 
sufficient, to activate that mechanism and produce a relativistic 
electron event? The resources which are now available as part of 
the International Solar Terrestrial Physics and Geospace 
Envrionment Modelling programs will certainly help answer 
those questions as well. 
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