133 research outputs found

    Study circles improve the precision in nutritional care in special accommodations

    Get PDF
    Background: Disease-related malnutrition is a major health problem in the elderly population, but it has until recently received very little attention, especially are management issues under-explored. By identifying residents at the risk of undernutrition, appropriate nutritional care can be provided. Objectives: Do study circles and policy documents improve the precision in nutritional care and decrease the prevalence of low or high BMI? Design: Pre and post intervention study. Setting: Special accommodations (nursing homes) within six municipalities were involved. Participants: In 2005, 1726 (90.4%) out of 1910 residents agreed to participate and in 2007, 1526 (81.8%) out of 1866 residents participated. Intervention: Study circles in one municipality, having a policy document in one municipality and no intervention in four municipalities. Measurements: Risk of undernutrition was defined as involving any of: involuntary weight loss, low BMI, and/or eating difficulties. Overweight was defined as high BMI. Results: In 2005 and 2007, 64% of 1726 and 66% of 1526 residents respectively were at the risk of undernutrition. In 2007 significantly more patients in the study circle municipality were accurately provided protein and energy enriched food compared to in the no intervention municipalities. There was a decrease in the prevalence of low BMI in the study circle municipality and the prevalence of overweight increased in the policy document municipality between 2005 and 2007

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet
    corecore