84 research outputs found

    La teledetección por radar como fuente de información litológica y estructural

    Get PDF
    Las imágenes de radar se han convertido en los últimos años en una herramienta de uso frecuente para la extracción de información geológica, siendo cada vez más numerosos los sistemas de teledetección por radar que ponen a disposición una gran variedad de imágenes de gran utilidad en la cartografía geológica. Dada la geometría de observación de los sistemas de radar (observación lateral) y las características de la señal (microondas activas), los datos adquiridos por sensores de radar son sustancialmente diferentes a los obtenidos por los sensores óptico-electrónicos, pudiendo ser considerados como una fuente de información complementaria. Los procesos que intervienen en la formación de una imagen de radar son muy dependientes de las propiedades del haz de radar, en términos de las características de la señal (frecuencia y polarización) y la geometría de observación (ángulo de incidencia, dirección de visión). Los satélites que llevan a bordo sensores de radar, pueden tomar imágenes en órbita ascendente o descendente, con mirada a la derecha o a la izquierda y con distintos ángulos de inclinación, variando así las condiciones de iluminación, por lo cual imágenes de una misma zona pueden ofrecer información muy diferente. Por estos motivos, el criterio de selección de las imágenes para una aplicación particular se convierte en un paso esencial. La sensibilidad de las microondas a las propiedades dieléctricas, al contenido de humedad y a la rugosidad superficial –en relación con la longitud de onda del haz de radar-, se verá reflejada en el tono y textura de las imágenes, dado que estos factores inciden directamente en la intensidad de la señal. Los sensores de radar permitirán poner en evidencia variaciones morfológicas sutiles en la micro topografía de los afloramientos, aún cuando las mismas se encuentren por debajo del límite de la resolución espacial. La morfología del terreno –sus pendientes y orientaciones- impactará significativamente en el retorno de la señal, puesto que condiciona el ángulo de incidencia local del haz de radar. Por otra parte, la geometría de visión lateral favorecerá el reconocimiento de lineamientos y rasgos estructurales en general, cuando estos presenten una expresión morfológica superficial y cuando la observación de los mismos sea realzada por la dirección de iluminación del haz de radar. Dada la gran variabilidad de los factores involucrados en la formación de una imagen de radar y de cómo todos estos factores interactúan con las características del territorio observado, es necesario tener estos elementos en cuenta para poder interpretar fielmente las características geológicas de un área. Se presentan aquí los fundamentos y resultados de algunas experiencias orientadas a analizar las potencialidades de las imágenes de radar de expresar variaciones litológicas y de favorecer la detección de rasgos estructurales y morfológicos.In recent years, radar imagery has become a frequently used tool for geological information extraction as more numerous radar remote sensing systems that make available a great variety of images of great utility to geological mapping have become available. Given these radar systems’ observation geometry (side viewing) and signal nature (active microwave), the data acquired by these radar sensors are substantially different from those obtained by optical sensors, making them able to be considered as a complementary information sources. The processes involved in the formation of radar imagery are highly dependent on the properties of the radar beam in terms of both the signal character (frequency and polarization) and the observation geometry (incidence angle, look direction). The satellites carrying on-board radar sensors can acquire images in either ascending or descending orbit and in either right- or left-looking directions as well as with different inclination angles (thus varying illumination conditions). Therefore images of the same area taken by different systems can provide very different information. Thus, determining the criteria for image selection for a particular application is an essential step. The microwave’s sensitivity to dielectric properties, moisture content and surface roughness, particularly in relationship to the wavelength of the radar beam, will be reflected in the images tone and texture since these factors directly affect the signal intensity. Radar sensors can highlight subtle morphological variations in an outcrops’ micro topography even when its size is below the limit of the spatial resolution of the imagery. The terrain morphology (its slope and aspect) will have a significant impact on the return signal since it affects the local radar beam incidence angle. Moreover, the side-viewing geometry will benefit the identification of lineaments and structural features in general when they have a morphological expression and if their observation is enhanced by the radar beam illumination. Given the great variability of the factors involved in formation of a radar image, and given how all these factors interact with the characteristics of the imaged area, all these elements must be taken into account to faithfully interpret the geological characteristics of a particular territory. The basis and results of some analyses of the potential of radar imagery to manifest lithological variations and to benefit the detection of structural and morphological features are presented here

    Radar remote sensing as a source of structural and lithological information. Radarsat-1 SAR spatial image analysis

    Get PDF
    Las imágenes de radar se han convertido en los últimos años en una herramienta de uso frecuente para la extracción de información geológica, siendo cada vez más numerosos los sistemas de teledetección por radar que ponen a disposición una gran variedad de imágenes de gran utilidad en la cartografía geológica. Dada la geometría de observación de los sistemas de radar (observación lateral) y las características de la señal (microondas activas), los datos adquiridos por sensores de radar son sustancialmente diferentes a los obtenidos por los sensores óptico-electrónicos, pudiendo ser considerados como una fuente de información complementaria. Los procesos que intervienen en la formación de una imagen de radar son muy dependientes de las propiedades del haz de radar, en términos de las características de la señal (frecuencia y polarización) y la geometría de observación (ángulo de incidencia, dirección de visión). Los satélites que llevan a bordo sensores de radar, pueden tomar imágenes en órbita ascendente o descendente, con mirada a la derecha o a la izquierda y con distintos ángulos de inclinación, variando así las condiciones de iluminación, por lo cual imágenes de una misma zona pueden ofrecer información muy diferente. Por estos motivos, el criterio de selección de las imágenes para una aplicación particular se convierte en un paso esencial. La sensibilidad de las microondas a las propiedades dieléctricas, al contenido de humedad y a la rugosidad superficial –en relación con la longitud de onda del haz de radar-, se verá reflejada en el tono y textura de las imágenes, dado que estos factores inciden directamente en la intensidad de la señal. Los sensores de radar permitirán poner en evidencia variaciones morfológicas sutiles en la micro topografía de los afloramientos, aún cuando las mismas se encuentren por debajo del límite de la resolución espacial. La morfología del terreno –sus pendientes y orientaciones- impactará significativamente en el retorno de la señal, puesto que condiciona el ángulo de incidencia local del haz de radar. Por otra parte, la geometría de visión lateral favorecerá el reconocimiento de lineamientos y rasgos estructurales en general, cuando estos presenten una expresión morfológica superficial y cuando la observación de los mismos sea realzada por la dirección de iluminación del haz de radar. Dada la gran variabilidad de los factores involucrados en la formación de una imagen de radar y de cómo todos estos factores interactúan con las características del territorio observado, es necesario tener estos elementos en cuenta para poder interpretar fielmente las características geológicas de un área. Se presentan aquí los fundamentos y resultados de algunas experiencias orientadas a analizar las potencialidades de las imágenes de radar de expresar variaciones litológicas y de favorecer la detección de rasgos estructurales y morfológicos.In recent years, radar imagery has become a frequently used tool for geological information extraction as more numerous radar remote sensing systems that make available a great variety of images of great utility to geological mapping have become available. Given these radar systems’ observation geometry (side viewing) and signal nature (active microwave), the data acquired by these radar sensors are substantially different from those obtained by optical sensors, making them able to be considered as a complementary information sources. The processes involved in the formation of radar imagery are highly dependent on the properties of the radar beam in terms of both the signal character (frequency and polarization) and the observation geometry (incidence angle, look direction). The satellites carrying on-board radar sensors can acquire images in either ascending or descending orbit and in either right- or left-looking directions as well as with different inclination angles (thus varying illumination conditions). Therefore images of the same area taken by different systems can provide very different information. Thus, determining the criteria for image selection for a particular application is an essential step. The microwave’s sensitivity to dielectric properties, moisture content and surface roughness, particularly in relationship to the wavelength of the radar beam, will be reflected in the images tone and texture since these factors directly affect the signal intensity. Radar sensors can highlight subtle morphological variations in an outcrops’ micro topography even when its size is below the limit of the spatial resolution of the imagery. The terrain morphology (its slope and aspect) will have a significant impact on the return signal since it affects the local radar beam incidence angle. Moreover, the side-viewing geometry will benefit the identification of lineaments and structural features in general when they have a morphological expression and if their observation is enhanced by the radar beam illumination. Given the great variability of the factors involved in formation of a radar image, and given how all these factors interact with the characteristics of the imaged area, all these elements must be taken into account to faithfully interpret the geological characteristics of a particular territory. The basis and results of some analyses of the potential of radar imagery to manifest lithological variations and to benefit the detection of structural and morphological features are presented here.Facultad de Ciencias Naturales y Muse

    Radar remote sensing as a source of structural and lithological information. Radarsat-1 SAR spatial image analysis

    Get PDF
    Las imágenes de radar se han convertido en los últimos años en una herramienta de uso frecuente para la extracción de información geológica, siendo cada vez más numerosos los sistemas de teledetección por radar que ponen a disposición una gran variedad de imágenes de gran utilidad en la cartografía geológica. Dada la geometría de observación de los sistemas de radar (observación lateral) y las características de la señal (microondas activas), los datos adquiridos por sensores de radar son sustancialmente diferentes a los obtenidos por los sensores óptico-electrónicos, pudiendo ser considerados como una fuente de información complementaria. Los procesos que intervienen en la formación de una imagen de radar son muy dependientes de las propiedades del haz de radar, en términos de las características de la señal (frecuencia y polarización) y la geometría de observación (ángulo de incidencia, dirección de visión). Los satélites que llevan a bordo sensores de radar, pueden tomar imágenes en órbita ascendente o descendente, con mirada a la derecha o a la izquierda y con distintos ángulos de inclinación, variando así las condiciones de iluminación, por lo cual imágenes de una misma zona pueden ofrecer información muy diferente. Por estos motivos, el criterio de selección de las imágenes para una aplicación particular se convierte en un paso esencial. La sensibilidad de las microondas a las propiedades dieléctricas, al contenido de humedad y a la rugosidad superficial –en relación con la longitud de onda del haz de radar-, se verá reflejada en el tono y textura de las imágenes, dado que estos factores inciden directamente en la intensidad de la señal. Los sensores de radar permitirán poner en evidencia variaciones morfológicas sutiles en la micro topografía de los afloramientos, aún cuando las mismas se encuentren por debajo del límite de la resolución espacial. La morfología del terreno –sus pendientes y orientaciones- impactará significativamente en el retorno de la señal, puesto que condiciona el ángulo de incidencia local del haz de radar. Por otra parte, la geometría de visión lateral favorecerá el reconocimiento de lineamientos y rasgos estructurales en general, cuando estos presenten una expresión morfológica superficial y cuando la observación de los mismos sea realzada por la dirección de iluminación del haz de radar. Dada la gran variabilidad de los factores involucrados en la formación de una imagen de radar y de cómo todos estos factores interactúan con las características del territorio observado, es necesario tener estos elementos en cuenta para poder interpretar fielmente las características geológicas de un área. Se presentan aquí los fundamentos y resultados de algunas experiencias orientadas a analizar las potencialidades de las imágenes de radar de expresar variaciones litológicas y de favorecer la detección de rasgos estructurales y morfológicos.In recent years, radar imagery has become a frequently used tool for geological information extraction as more numerous radar remote sensing systems that make available a great variety of images of great utility to geological mapping have become available. Given these radar systems’ observation geometry (side viewing) and signal nature (active microwave), the data acquired by these radar sensors are substantially different from those obtained by optical sensors, making them able to be considered as a complementary information sources. The processes involved in the formation of radar imagery are highly dependent on the properties of the radar beam in terms of both the signal character (frequency and polarization) and the observation geometry (incidence angle, look direction). The satellites carrying on-board radar sensors can acquire images in either ascending or descending orbit and in either right- or left-looking directions as well as with different inclination angles (thus varying illumination conditions). Therefore images of the same area taken by different systems can provide very different information. Thus, determining the criteria for image selection for a particular application is an essential step. The microwave’s sensitivity to dielectric properties, moisture content and surface roughness, particularly in relationship to the wavelength of the radar beam, will be reflected in the images tone and texture since these factors directly affect the signal intensity. Radar sensors can highlight subtle morphological variations in an outcrops’ micro topography even when its size is below the limit of the spatial resolution of the imagery. The terrain morphology (its slope and aspect) will have a significant impact on the return signal since it affects the local radar beam incidence angle. Moreover, the side-viewing geometry will benefit the identification of lineaments and structural features in general when they have a morphological expression and if their observation is enhanced by the radar beam illumination. Given the great variability of the factors involved in formation of a radar image, and given how all these factors interact with the characteristics of the imaged area, all these elements must be taken into account to faithfully interpret the geological characteristics of a particular territory. The basis and results of some analyses of the potential of radar imagery to manifest lithological variations and to benefit the detection of structural and morphological features are presented here.Facultad de Ciencias Naturales y Muse

    Radar remote sensing as a source of structural and lithological information. Radarsat-1 SAR spatial image analysis

    Get PDF
    Las imágenes de radar se han convertido en los últimos años en una herramienta de uso frecuente para la extracción de información geológica, siendo cada vez más numerosos los sistemas de teledetección por radar que ponen a disposición una gran variedad de imágenes de gran utilidad en la cartografía geológica. Dada la geometría de observación de los sistemas de radar (observación lateral) y las características de la señal (microondas activas), los datos adquiridos por sensores de radar son sustancialmente diferentes a los obtenidos por los sensores óptico-electrónicos, pudiendo ser considerados como una fuente de información complementaria. Los procesos que intervienen en la formación de una imagen de radar son muy dependientes de las propiedades del haz de radar, en términos de las características de la señal (frecuencia y polarización) y la geometría de observación (ángulo de incidencia, dirección de visión). Los satélites que llevan a bordo sensores de radar, pueden tomar imágenes en órbita ascendente o descendente, con mirada a la derecha o a la izquierda y con distintos ángulos de inclinación, variando así las condiciones de iluminación, por lo cual imágenes de una misma zona pueden ofrecer información muy diferente. Por estos motivos, el criterio de selección de las imágenes para una aplicación particular se convierte en un paso esencial. La sensibilidad de las microondas a las propiedades dieléctricas, al contenido de humedad y a la rugosidad superficial –en relación con la longitud de onda del haz de radar-, se verá reflejada en el tono y textura de las imágenes, dado que estos factores inciden directamente en la intensidad de la señal. Los sensores de radar permitirán poner en evidencia variaciones morfológicas sutiles en la micro topografía de los afloramientos, aún cuando las mismas se encuentren por debajo del límite de la resolución espacial. La morfología del terreno –sus pendientes y orientaciones- impactará significativamente en el retorno de la señal, puesto que condiciona el ángulo de incidencia local del haz de radar. Por otra parte, la geometría de visión lateral favorecerá el reconocimiento de lineamientos y rasgos estructurales en general, cuando estos presenten una expresión morfológica superficial y cuando la observación de los mismos sea realzada por la dirección de iluminación del haz de radar. Dada la gran variabilidad de los factores involucrados en la formación de una imagen de radar y de cómo todos estos factores interactúan con las características del territorio observado, es necesario tener estos elementos en cuenta para poder interpretar fielmente las características geológicas de un área. Se presentan aquí los fundamentos y resultados de algunas experiencias orientadas a analizar las potencialidades de las imágenes de radar de expresar variaciones litológicas y de favorecer la detección de rasgos estructurales y morfológicos.In recent years, radar imagery has become a frequently used tool for geological information extraction as more numerous radar remote sensing systems that make available a great variety of images of great utility to geological mapping have become available. Given these radar systems’ observation geometry (side viewing) and signal nature (active microwave), the data acquired by these radar sensors are substantially different from those obtained by optical sensors, making them able to be considered as a complementary information sources. The processes involved in the formation of radar imagery are highly dependent on the properties of the radar beam in terms of both the signal character (frequency and polarization) and the observation geometry (incidence angle, look direction). The satellites carrying on-board radar sensors can acquire images in either ascending or descending orbit and in either right- or left-looking directions as well as with different inclination angles (thus varying illumination conditions). Therefore images of the same area taken by different systems can provide very different information. Thus, determining the criteria for image selection for a particular application is an essential step. The microwave’s sensitivity to dielectric properties, moisture content and surface roughness, particularly in relationship to the wavelength of the radar beam, will be reflected in the images tone and texture since these factors directly affect the signal intensity. Radar sensors can highlight subtle morphological variations in an outcrops’ micro topography even when its size is below the limit of the spatial resolution of the imagery. The terrain morphology (its slope and aspect) will have a significant impact on the return signal since it affects the local radar beam incidence angle. Moreover, the side-viewing geometry will benefit the identification of lineaments and structural features in general when they have a morphological expression and if their observation is enhanced by the radar beam illumination. Given the great variability of the factors involved in formation of a radar image, and given how all these factors interact with the characteristics of the imaged area, all these elements must be taken into account to faithfully interpret the geological characteristics of a particular territory. The basis and results of some analyses of the potential of radar imagery to manifest lithological variations and to benefit the detection of structural and morphological features are presented here.Facultad de Ciencias Naturales y Muse

    A comparative analysis of scanned maps and imagery for mapping applications

    Get PDF
    Abstract In mapping organizations, the implementation of more automation coupled with the availability of heterogeneous data requires the investigation, adaptation and evaluation of new approaches and techniques. The demand for rapid mapping operations such as database generation and updating is continuously increasing. Due to the rising use of raster data, image analysis techniques have been investigated and tested in this study to introduce automation in the assessment of scanned topographic monochrome maps and Landsat 7 ETM+ imagery for feature separation and extraction in northern Canada. The work focuses on the detection and extraction of lakes -predominant features in the North -as well as on to their spatiotemporal comparison. Various approaches using digital image processing techniques were implemented and evaluated. Thresholding and texture measures were used to evaluate the potential of rapid extraction of certain topographic elements from scanned monochrome maps of northern Canada. A raster to vector approach (R ! V) followed for the vectorization of these extracted features. The extraction of features from Landsat 7 ETM+ imagery involved image and theme enhancement by applying various image fusion and spectral transformations (e.g., Brovey, PCI-IMGFUSE, intensity -hue -saturation (IHS), principal component analysis (PCA), Tasseled Cap, Normalized Difference Vegetation Index (NDVI)), followed by image classification and thresholding. Tests showed that the approaches were more or less feature-dependent, while, at the same time, they can augment and significantly enhance the conventional topographic mapping methods. Following the analysis of the map and image data, change detection between two lake datasets was performed both interactively and in an automated mode based on the non-intersection of old and new features. The various approaches and methodology developed and implemented within a GIS environment along with examples, results and limitations are presented and discussed. Crow

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men
    corecore