7,564 research outputs found
Colloidal CuFeS2 Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency
We describe the colloidal hot-injection synthesis of phase-pure nanocrystals
(NCs) of a highly abundant mineral, chalcopyrite (CuFeS2). Absorption bands
centered at around 480 and 950 nm, spanning almost the entire visible and near
infrared regions, encompass their optical extinction characteristics. These
peaks are ascribable to electronic transitions from the valence band (VB) to
the empty intermediate band (IB), located in the fundamental gap and mainly
composed of Fe 3d orbitals. Laser-irradiation (at 808 nm) of an aqueous
suspension of CuFeS2 NCs exhibited significant heating, with a photothermal
conversion efficiency of 49%. Such efficient heating is ascribable to the
carrier relaxation within the broad IB band (owing to the indirect VB-IB gap),
as corroborated by transient absorption measurements. The intense absorption
and high photothermal transduction efficiency (PTE) of these NCs in the
so-called biological window (650-900 nm) makes them suitable for photothermal
therapy as demonstrated by tumor cell annihilation upon laser irradiation. The
otherwise harmless nature of these NCs in dark conditions was confirmed by in
vitro toxicity tests on two different cell lines. The presence of the deep Fe
levels constituting the IB is the origin of such enhanced PTE, which can be
used to design other high performing NC photothermal agents.Comment: 12 pages, Chemistry of Materials, 31-May-201
Orale Mukositis bei Patienten unter Tumortherapie
Zusammenfassung: Zu den unerwünschten Nebenwirkungen bestimmter Chemo- und Radiotherapien gehört die orale Mukositis, eine Entzündung der Mundschleimhaut. Da sie die Lebensqualität der Patienten in hohem Maße beeinträchtigen kann, sollten Pflegende der Mundhygiene einen besonders hohen Stellenwert beimessen. In der täglichen Praxis wird die orale Mukositis oft kontrovers diskutiert. In diesem Artikel werden aktuelle theoriebasierte und erfahrungsbasierte Grundlagen und Anleitungen für die Pflege und Behandlung vorgestell
Inference of population splits and mixtures from genome-wide allele frequency data
Many aspects of the historical relationships between populations in a species
are reflected in genetic data. Inferring these relationships from genetic data,
however, remains a challenging task. In this paper, we present a statistical
model for inferring the patterns of population splits and mixtures in multiple
populations. In this model, the sampled populations in a species are related to
their common ancestor through a graph of ancestral populations. Using
genome-wide allele frequency data and a Gaussian approximation to genetic
drift, we infer the structure of this graph. We applied this method to a set of
55 human populations and a set of 82 dog breeds and wild canids. In both
species, we show that a simple bifurcating tree does not fully describe the
data; in contrast, we infer many migration events. While some of the migration
events that we find have been detected previously, many have not. For example,
in the human data we infer that Cambodians trace approximately 16% of their
ancestry to a population ancestral to other extant East Asian populations. In
the dog data, we infer that both the boxer and basenji trace a considerable
fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to
domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese)
result from admixture between modern toy breeds and "ancient" Asian breeds.
Software implementing the model described here, called TreeMix, is available at
http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15
figures. This is an updated version of the preprint available at
http://precedings.nature.com/documents/6956/version/
An evaluation of fuel model accuracy and multi-scale mitigation strategies in the wildland-urban interface of southern Humboldt County
Strategic placement of fuel treatments is critical for mitigating wildfire risk and reducing potential structure losses in wildland-urban interface (WUI) communities. As wildfire activity accelerates across the western United States, the need to identify high-impact fuel treatment locations grows increasingly urgent. Concurrently, housing development in the WUI is expanding, intensifying the exposure of homes and infrastructure to wildfire threats. In response, many communities are looking to mitigate the likelihood and severity of losses during wildfire events. The success of these efforts depends, in part, on robust data to support strategic placement of effective treatments that reduce fuel availability.
This study used operational fire behavior modeling tools to compare the effectiveness of WUI protection strategies focused on homes versus the broader landscape surrounding communities under extreme fire weather conditions. The first phase of analysis involved modeling the 2020 Glass Fire using three different fuel model datasets to assess how these inputs influence modeled fire behavior. Building on these findings, a custom, locally calibrated fuel map was developed for a separate study area in northern California. This map and a standard LANDFIRE dataset were used to simulate hypothetical wildfire scenarios and compare treatment outcomes. The results clarify the tradeoffs inherent in spatially distinct approaches: defensible space treatments can reduce structure-level exposure, while landscape-scale treatments are more effective at limiting large-scale fire spread. In the context of increasingly hazardous wildfire conditions, this study offers guidance for planners and fire-prone communities in northern California and beyond and reinforces the importance of data-driven fuels management in protecting WUI communities
Statistical properties of genealogical trees
We analyse the statistical properties of genealogical trees in a neutral
model of a closed population with sexual reproduction and non-overlapping
generations. By reconstructing the genealogy of an individual from the
population evolution, we measure the distribution of ancestors appearing more
than once in a given tree. After a transient time, the probability of
repetition follows, up to a rescaling, a stationary distribution which we
calculate both numerically and analytically. This distribution exhibits a
universal shape with a non-trivial power law which can be understood by an
exact, though simple, renormalization calculation. Some real data on human
genealogy illustrate the problem, which is relevant to the study of the real
degree of diversity in closed interbreeding communities.Comment: Accepted for publication in Phys. Rev. Let
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam
A module of the ATLAS electromagnetic barrel liquid argon calorimeter was
exposed to the CERN electron test-beam at the H8 beam line upgraded for
precision momentum measurement. The available energies of the electron beam
ranged from 10 to 245 GeV. The electron beam impinged at one point
corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of
phi=0.28 in the ATLAS coordinate system. A detailed study of several effects
biasing the electron energy measurement allowed an energy reconstruction
procedure to be developed that ensures a good linearity and a good resolution.
Use is made of detailed Monte Carlo simulations based on Geant which describe
the longitudinal and transverse shower profiles as well as the energy
distributions. For electron energies between 15 GeV and 180 GeV the deviation
of the measured incident electron energy over the beam energy is within 0.1%.
The systematic uncertainty of the measurement is about 0.1% at low energies and
negligible at high energies. The energy resolution is found to be about 10%
sqrt(E) for the sampling term and about 0.2% for the local constant term
Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam
We present the results of the first exposure of a Liquid Argon TPC to a
multi-GeV neutrino beam. The data have been collected with a 50 liters
ICARUS-like chamber located between the CHORUS and NOMAD experiments at the
CERN West Area Neutrino Facility (WANF). We discuss both the instrumental
performance of the detector and its capability to identify and reconstruct low
multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review
Large genomic aberrations detected by SNP array are independent prognosticators of a shorter time to first treatment in chronic lymphocytic leukemia patients with normal FISH
Background Genomic complexity can predict the clinical course of patients affected by chronic lymphocytic leukemia (CLL) with a normal FISH. However, large studies are still lacking. Here, we analyzed a large series of CLL patients and also carried out the so far largest comparison of FISH versus single-nucleotide polymorphism (SNP) array in this disease. Patients and methods SNP-array data were derived from a previously reported dataset. Results Seventy-seven of 329 CLL patients (23%) presented with a normal FISH. At least one large (>5 Mb) genomic aberration was detected by SNP array in 17 of 77 patients (22%); this finding significantly affected TTT. There was no correlation with the presence of TP53 mutations. In multivariate analysis, including age, Binet stage, IGHV genes mutational status and large genomic lesion, the latter three factors emerged as independent prognosticators. The concordance between FISH and SNP array varied between 84 and 97%, depending on the specific genomic locus investigated. Conclusions SNP array detected additional large genomic aberrations not covered by the standard FISH panel predicting the outcome of CLL patient
Bremsstrahlung Suppression due to the LPM and Dielectric Effects in a Variety of Materials
The cross section for bremsstrahlung from highly relativistic particles is
suppressed due to interference caused by multiple scattering in dense media,
and due to photon interactions with the electrons in all materials. We present
here a detailed study of bremsstrahlung production of 200 keV to 500 MeV
photons from 8 and 25 GeV electrons traversing a variety of target materials.
For most targets, we observe the expected suppressions to a good accuracy. We
observe that finite thickness effects are important for thin targets.Comment: 52 pages, 13 figures (incorporated in the revtex LaTeX file
- …
