18 research outputs found

    Revisiting hydro-ecological impacts of climate change on a restored floodplain wetland via hydrological/hydraulic modelling and the UK Climate Projections 2018 scenarios

    Get PDF
    The hydro-ecological impacts of 40 UK Climate Projections 2018 scenarios on a restored lowland England river floodplain are assessed using a MIKE SHE / MIKE 11 model. Annual precipitation declines for 60% of scenarios (range: -26%–21%, with small, <5%, declines for the central probability level). Potential evapotranspiration increases for all probability levels except the most extreme, very unlikely, 10% level (range: -4%–43%, central probability 9%–20%) Mean, peak and low river discharges are reduced for all but the extreme 90% probability level. Reduced frequency of bankfull discharge dominates (at least halved for the central probability level). Floodplain inundation declines for over 97% of 320 scenario-events. Winter water table levels still intercept the surface, while mean and summer low levels are reduced. Declines in mean summer floodplain water table levels for the central probability level (0.22 m and 0.28 m for the 2050s and 2080s, respectively) are twice as large as those in the more dynamic riparian area. Declines reach 0.39 m for some 10% probability level scenarios. Simulated hydrological changes differ subtly from a previous assessment using earlier UK climate projections. A soil aeration stress index demonstrates that, under baseline conditions, prolonged high winter floodplain water tables drive long periods of low root-zone oxygen, in turn favouring vegetation communities adapted to waterlogged conditions. Climate change reduces aeration stress and the extent of appropriate conditions for these plant communities in favour of communities less tolerant of wet conditions

    Fine-Scale in Situ Measurement of Riverbed Nitrate Production and Consumption in an Armored Permeable Riverbed

    Get PDF
    Alteration of the global nitrogen cycle by man has increased nitrogen loading in waterways considerably, often with harmful consequences for aquatic ecosystems. Dynamic redox conditions within riverbeds support a variety of nitrogen transformations, some of which can attenuate this burden. In reality, however, assessing the importance of processes besides perhaps denitrification is difficult, due to a sparseness of data, especially in situ, where sediment structure and hydrologic pathways are intact. Here we show in situ within a permeable riverbed, through injections of 15N-labeled substrates, that nitrate can be either consumed through denitrification or produced through nitrification, at a previously unresolved fine (centimeter) scale. Nitrification and denitrification occupy different niches in the riverbed, with denitrification occurring across a broad chemical gradient while nitrification is restricted to more oxic sediments. The narrow niche width for nitrification is in effect a break point, with the switch from activity “on” to activity “off” regulated by interactions between subsurface chemistry and hydrology. Although maxima for denitrification and nitrification occur at opposing ends of a chemical gradient, high potentials for both nitrate production and consumption can overlap when groundwater upwelling is strong

    Simulation of the hydrological impacts of climate change on a restored floodplain

    Get PDF
    Thirty UK Climate Projections 2009 (UKCP09) scenarios are simulated using a MIKE SHE/MIKE 11 model of a restored floodplain in eastern England. Annual precipitation exhibits uncertainty in direction of change. Extreme changes (10 and 90% probability) range between −27 and +30%. The central probability projects small declines ( < −4%). Wetter winters and drier summers predominate. Potential evapotranspiration increases for most scenarios (annual range of change: −41 to +2%). Declines in mean discharge predominate (range: −41 to +25%). Reductions of 11–17% are projected for the central probability. High and low flows, and the frequency of bankfull discharge exceedence reduce in most cases. Duration of winter high floodplain water tables declines. Summer water tables are on average at least 0.11 and 0.18 m lower for the 2050s and 2080s, respectively. Flood extent declines in most scenarios. Drier conditions will likely induce ecological responses including impacts on floodplain vegetation

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Potential contaminant release from agricultural soil and dredged sediment following managed realignment

    No full text
    Purpose Laboratory experiments were conducted to examine the potential for metal (Cu, Ni and Zn) and herbicide (simazine, atrazine and diuron) release from agricultural soil and dredged sediment in managed realignment sites following tidal inundation. Materials and methods Column microcosm and batch sorption experiments were carried out at low (5 practical salinity units, psu) and high (20 psu) salinity to evaluate the changes in the partitioning of metals and herbicides between the soil/sediment and the aqueous phase, and the release of metals and herbicides from soil/sediment to the overlying water column. Results and discussion For both the metals and herbicides, the highest contaminant loads were released from the sediment within the first 24 h of inundation suggesting that any negative impacts to overlying water quality in a managed realignment scheme will be relatively short term following tidal inundation of soil and sediment. The release of metals was found to be dependent on a combination of salinity effects and the strength of binding of the metals to the soil and sediment. In the case of the herbicides, salinity impacted on their release. Particulate organic carbon was found to control the binding and release of the herbicides, highlighting the importance of assessing soil and sediment organic matter content when planning managed realignment sites. Conclusions Our research demonstrates that metals and herbicides may be released from contaminated sediments and agricultural soils during initial periods of flooding by seawater in managed realignment sites

    Sediment characteristics of a restored saltmarsh and mudflat in a managed realignment scheme in Southeast England

    No full text
    Sediment characteristics and vegetation composition were measured in a restored and natural saltmarsh and mudflat at Wallasea Island managed realignment scheme (Essex, UK) from January to December 2007. The similar sediment characteristics in the restored and natural mudflat indicated that the sediment in the restored mudflat was approaching natural conditions. However, the sediment characteristics in the restored saltmarsh were not becoming similar to those in the natural saltmarsh. The sediment moisture content, organic matter content and porosity were lower while the sediment bulk density, salinity and pH were higher in the restored compared to the natural saltmarsh. The dissimilarities were mainly due to differences in the vegetation abundance and organic matter content. Although, 18 months after restoration the restored saltmarsh was only sparsely vegetated and there was no net change in the sediment characteristics, the occurrence of Salicornia europaea L. demonstrated that pioneer saltmarsh vegetation establishment preceded the development of sediment characteristics

    Hydrological Properties Predict the Composition of Microbial Communities Cycling Methane and Nitrogen in Rivers

    Get PDF
    Sediment microbial communities drive the biogeochemical cycles that make rivers globally important sources and sinks of carbon (C) and nitrogen (N). The structure of these communities is strongly determined by the local physicochemical environment. However, we currently lack an understanding of the factors that determine microbial community structures at the catchment scale. Here, we show that the contribution of groundwater to total river flow (quantified as base flow index; BFI) predicts the structure and diversity of the different microbial functional groups that cycle N and C across nine UK rivers, spanning a geological BFI gradient from 0.23 (clay sediment) to 0.95 (chalk gravel sediment). Furthermore, the GC-content (percentage of guanine-cytosine bases in a DNA sequence) and codon-usage bias of ammonia monooxygenase DNA sequences, and the hydrophobicity and net-charge of the corresponding amino acid sequences, were all strongly correlated with BFI, likely reflecting physiological adaptations to different riverbed sediment structure along the BFI gradient. Our results offer an opportunity to overcome the “paradox of scales” that has seen microbial ecologists focus on small- rather than large-scale environmental variables, enabling us to scale-up our understanding of microbial biogeochemistry to the catchment and beyond

    Simulated effects of floodplain restoration on plant community types

    Get PDF
    Aims: Channelization and artificial embankments have altered the natural flood regime of many rivers, impacting the hydrological characteristics of floodplain ecosystems and their biological communities. This study was undertaken on a floodplain meadow to assess spatial patterns of plant communities in relation to soil physical and chemical conditions, and the impacts of floodplain restoration that involved embankment-removal. Location: River Glaven, Hunworth, Norfolk, UK. Methods: Fine-scale plant and soil chemistry sampling was conducted prior to embankment removal, and hydrological and climatological conditions were monitored prior to and after embankment removal. Hydrological/hydraulic modelling simulated groundwater levels for a 10-year period to assess changes in soil aeration stresses and plant community composition following embankment-removal. Results: Hydrology was identified as the primary driver of plant community composition. Soil fertility was also important. Unique continuous measurements of vadose dissolved oxygen concentrations using oxygen optodes indicated strong coupling between water table depth and root zone dissolved oxygen concentrations. Reinstatement of overbank flows did not substantially affect aeration stress across most of the meadow because of pre-existing wet conditions. However, along the riverfloodplain ecotone, aeration stress increased substantially from conditions normally associated with dry grassland to those characteristic of fen communities (p<0.05). Conclusions: This restored water table regime may be suitable for more diverse plant assemblages. Benefits of flooding for increased species richness and transport of propagules may, however, be over-ridden without accompanying water level management during the growing season, or hay removal to balance additional supply of nutrients from river floodwater and sediment. Our results show that hydrological/hydraulic modelling combined with quantitative measures of plant water-requirements can provide practical and adaptive management tools to estimate the response of floodplain communities to changing water regimes
    corecore