1,043 research outputs found

    The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis

    Get PDF
    The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family of plasma membrane receptors consists of five closely related members. The SERK1 and SERK2 genes show a complex expression pattern throughout development. Both are expressed in anther primordia up to the second parietal division. After this point, expression ceases in the sporocytes and is continued in the tapetum and middle layer precursors. Single knockout mutants of SERK1 and SERK2 show no obvious phenotypes. Double mutants of SERK1 and SERK2 are completely male sterile due to a failure in tapetum specification. Fertility can be restored by a single copy of either gene. The SERK1 and SERK2 proteins can form homodimers or heterodimers in vivo, suggesting they are interchangeable in the SERK1/SERK2 signaling comple

    Two-axis magnetic field sensor

    Get PDF
    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions

    Learning Colour Representations of Search Queries

    Full text link
    Image search engines rely on appropriately designed ranking features that capture various aspects of the content semantics as well as the historic popularity. In this work, we consider the role of colour in this relevance matching process. Our work is motivated by the observation that a significant fraction of user queries have an inherent colour associated with them. While some queries contain explicit colour mentions (such as 'black car' and 'yellow daisies'), other queries have implicit notions of colour (such as 'sky' and 'grass'). Furthermore, grounding queries in colour is not a mapping to a single colour, but a distribution in colour space. For instance, a search for 'trees' tends to have a bimodal distribution around the colours green and brown. We leverage historical clickthrough data to produce a colour representation for search queries and propose a recurrent neural network architecture to encode unseen queries into colour space. We also show how this embedding can be learnt alongside a cross-modal relevance ranker from impression logs where a subset of the result images were clicked. We demonstrate that the use of a query-image colour distance feature leads to an improvement in the ranker performance as measured by users' preferences of clicked versus skipped images.Comment: Accepted as a full paper at SIGIR 202

    Shear-thinning, Coulomb friction and grain collisions in debris-flow waterfalls: Applications of a 3D phase mixture model with a single calibration parameter and a complex 4-way coupled resolved CFD-DEM approach

    Get PDF
    Shear-thinning is a common flow-feature of fine sediment suspensions. Mixed with gravel, Coulomb friction drives the energy dissipation between small grains while collisions become more and more important with larger grains. The interaction of the flow with local geometries of the channel can enforce each of these three key features, making the design analysis of channel sections with obstacles a highly back-coupled system. This paper addresses the numerical simulation of debris flow material under extreme flow conditions at planned protection measures. Mixtures with small grain sizes are modelled with a single calibration parameter using the 3D CFD phase mixture software debrisInterMixing and compared with laboratory experiments. To further investigate the scaling of the results, a coupled code of YADE and debrisInterMixingLP is applied accounting for the 4-way coupling to the coarse boulders at the front with resolved CFD-DEM, reaching beyond the possibilities of debris flow experiments

    Concert recording 2017-11-30b

    Get PDF
    [Track 1]. Sonata for clarinet and piano. I. Mässig bewegt / Paul Hindemith -- [Track 2]. Concertino in E♭ major, op. 26 / Carl Maria von Weber -- [Track 3]. Five bagatelles for clarinet and piano, op. 23. I. Prelude / Gerald Finzi -- [Track 4]. Solo de concours, op. 10 / Henri Rabaud -- [Track 5]. Concerto no. 2 in E♭ major, op. 74. III. Alla polacca / Weber -- [Track 6]. Six studies in English folk song. II. Andante sostenuto (\u27Spurn point\u27) [Track 7]. III. Larghetto ( Van Dieman\u27s land\u27) in D modal minor [Track 8]. IV. Lento (\u27She borrowed some of her mother\u27s gold\u27) in D major / Ralph Vaughan Williams -- [Track 9]. Concerto no. 2 in F minor, op. 5. III. Rondo: allegretto / Bernard Crusell -- [Track 10]. Premiere rhapsodie / Claude Debussy -- [Track 11]. Fantasy for clarinet and piano / Carl Nielsen

    DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes

    Get PDF
    The identities of cell polarity determinants are not conserved between animals and plants; however, characterization of a DIX-domain containing protein in land plants reveals that the physical principles of polar complex assembly are preserved across eukaryotes.</p

    The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared

    Full text link
    Quasars are thought to be powered by supermassive black holes accreting surrounding gas. Central to this picture is a putative accretion disk which is believed to be the source of the majority of the radiative output. It is well known, however, that the most extensively studied disk model -- an optically thick disk which is heated locally by the dissipation of gravitational binding energy -- is apparently contradicted by observations in a few major respects. In particular, the model predicts a specific blue spectral shape asymptotically from the visible to the near-infrared, but this is not generally seen in the visible wavelength region where the disk spectrum is observable. A crucial difficulty was that, toward the infrared, the disk spectrum starts to be hidden under strong hot dust emission from much larger but hitherto unresolved scales, and thus has essentially been impossible to observe. Here we report observations of polarized light interior to the dust-emiting region that enable us to uncover this near-infrared disk spectrum in several quasars. The revealed spectra show that the near-infrared disk spectrum is indeed as blue as predicted. This indicates that, at least for the outer near-infrared-emitting radii, the standard picture of the locally heated disk is approximately correct. The model problems at shorter wavelengths should then be directed toward a better understanding of the inner parts of the revealed disk. The newly uncovered disk emission at large radii, with more future measurements, will also shed totally new light on the unanswered critical question of how and where the disk ends.Comment: published in Nature, 24 July 2008 issue. Supplementary Information can be found at http://www.mpifr-bonn.mpg.de/div/ir-interferometry/suppl_info.pdf Published version can be accessed from http://www.nature.com/nature/journal/v454/n7203/pdf/nature07114.pd

    AGN accretion disks as spatially resolved by polarimetry

    Get PDF
    A crucial difficulty in understanding the nature of the putative accretion disk in AGNs is that some of its key intrinsic spectral signatures cannot be observed directly. The strong emissions from the broad-line region (BLR) and the obscuring torus, which are generally yet to be spatially resolved, essentially 'bury' such signatures. Here we argue that we can actually isolate the disk emission spectrum by using optical and near-infrared polarization of quasars and uncover the important spectral signatures. In these quasars, the polarization is considered to originate from electron scattering interior to the BLR, so that the polarized flux shows the disk spectrum with all the emissions from the BLR and torus eliminated. The polarized flux observations have now revealed a Balmer edge feature in absorption and a blue near-infrared spectral shape consistent with a specific and robust theoretical prediction. These results critically verify the long-standing picture of an optically thick and locally heated disk in AGNs.Comment: Proceedings for "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.
    corecore