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SUMMARY

Cell polarity is fundamental for tissue morphogen-
esis in multicellular organisms. Plants and animals
evolved multicellularity independently, and it is un-
known whether their polarity systems are derived
from a single-celled ancestor. Planar polarity in
animals is conferred by Wnt signaling, an ancient
signaling pathway transducedbyDishevelled,which
assembles signalosomes by dynamic head-to-tail
DIX domain polymerization. In contrast, polarity-
determining pathways in plants are elusive. We
recently discovered Arabidopsis SOSEKI proteins,
which exhibit polar localization throughout develop-
ment. Here, we identify SOSEKI as ancient polar pro-
teins across land plants. Concentration-dependent
polymerization via a bona fide DIX domain allows
these to recruit ANGUSTIFOLIA topolar sites, similar
to the polymerization-dependent recruitment of
signaling effectors by Dishevelled. Cross-kingdom
domain swaps reveal functional equivalence of ani-
mal and plant DIX domains. We trace DIX domains
to unicellular eukaryotes and thus show that DIX-
dependent polymerization is an ancient mechanism
conservedbetween kingdomsandcentral to polarity
proteins.
INTRODUCTION

Cell polarity is fundamental for the development of organisms

across kingdoms of life. Polarity establishment involves the

translation of directional cues into subcellular responses, such

as local assembly of protein complexes or formation of out-

growths (St Johnston and Ahringer, 2010). In multicellular organ-

isms, individual cell polarity additionally needs to integrate global

organismal axes, and be coordinated among neighboring cells

within a plane (Butler and Wallingford, 2017). Planar polarity en-
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sures correct morphogenesis of tissues by regulating cell growth

and differentiation, as well as through orienting structures pro-

truding from single cells within epithelia, such as hairs and cilia

(Butler and Wallingford, 2017). Despite the fundamental impor-

tance of cellular and planar polarity formulticellular life, it remains

unclear how polarity-determining systems evolved in plants and

animals. Do both kingdoms use similar mechanisms derived

from their last single-celled common ancestor, or did each line-

age evolve independent solutions to the same problem?

Various mechanisms conferring cell polarization have been

uncovered in animals. A central component in planar cell polarity

(PCP) depends on Wnt signaling, transduced by Dishevelled

(DVL) (Strutt, 2002). Wnt ligands bind to Frizzled and one of

several co-receptors, which leads to the activation of distinct

branches of intracellular Wnt signaling, depending on the co-re-

ceptor (Angers and Moon, 2009). The best-studied branch is

mediated by b-catenin which is stabilized upon Wnt binding to

Frizzled and LRP5/6 co-receptor, and thus translocates to the

nucleus to co-activate Wnt-dependent gene transcription (Gam-

mons and Bienz, 2018). Non-canonical Wnt signaling does not

involve b-catenin, but instead controls various cellular processes

through other signaling intermediates (Strutt, 2002). Central to

both canonical and non-canonical signaling is the Dishevelled

hub protein, which assembles Wnt signalosomes by reversible

head-to-tail polymerization of its DIX domain (Schwarz-Romond

et al., 2007a). DIX filaments are cross-linked by dimerization

of the Dishevelled DEP domain, generating three-dimensional

dynamic structures (Gammons et al., 2016a), akin to phase-

separated protein condensates (Schaefer and Peifer, 2019).

Dishevelled thus attains a high local concentration that enables

it to interact efficiently with low-affinity signaling effectors

whose normal cellular concentration is too low to interact with

unpolymerized Dishevelled (Bienz, 2014). Signaling effectors

include Axin for canonical Wnt signaling and various other

proteins in non-canonical signaling (Strutt, 2002; Yang and

Mlodzik, 2015). While the importance of DIX domain-mediated

polymerization is well-established in canonical Wnt signaling,

its role in cell polarity signaling has not been tested. However,

all available evidence suggests that the DIX domain may also

be important for non-canonical signaling: for example, polar
ruary 6, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 427
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membrane-associated Dishevelled puncta (condensates) have

been reported in Drosophila wing discs during PCP signaling

(Axelrod, 2001; Strutt et al., 2016), in C. elegans B cells (Wu

and Herman, 2007), and Xenopus embryos (Yamanaka and

Nishida, 2007), and the DIX domain is required for polar localiza-

tion in the latter two cellular contexts. Furthermore, upon

deletion of its DIX domain, Drosophila Dsh behaves as a domi-

nant-negative, producing planar polarity phenotypes in wings

(Axelrod et al., 1998), indicating a function of this domain for

PCP signaling.

Plants evolved multicellularity independently from animals, and

may therefore use different polarity systems. Indeed, orthologs of

the well-known polarity regulators from animals or yeast are

thought to be missing from plant genomes (Kania et al., 2014),

with the exception of the Rho-of-Plants (Rop) proteins (Yang,

2008) that are important for cell morphogenesis (Yang and Lavagi,

2012). However, a role for Rop proteins in polarization of dividing

cells has not yet been found. Several plant-specific proteins have

been linked to polarity because of their accumulation at one side

of the cell. For example, PIN auxin hormone transport facilitators

(Gälweiler et al., 1998; Kania et al., 2014), Boron transporters

NIP5;1 and BOR1 (Takano et al., 2010), POLAR scaffold protein

(Pillitteri et al., 2011), SGN1 protein kinase (Alassimone et al.,

2016), and CASP scaffold proteins (Roppolo et al., 2011) all

localize to specific sides of plant cells. However, their localization

is readily perturbed by experimental manipulations of transport

systems or cellular trafficking (Kania et al., 2014) and often de-

pends on tissue context and developmental stage. As such,

most currently known polar proteins are likely clients or readouts

of polarity systems, rather than integral components of polarity-

generating pathways. Some polar proteins, such as the BASL

scaffold protein (Dong et al., 2009) and its partner protein

BRXL2 (Rowe et al., 2019), have been shown to regulate cell po-

larity or asymmetric cell division. However, BASL is expressed in

specific tissues and cell types exclusively of flowering plants,

which makes it unlikely that it is a constituent of a universal polar-

ity-generating mechanism. Such a mechanism may be expected

to be conserved in early-diverging land plants such as mosses or

liverworts; however, little is known about cell and tissue polarity in

these organisms. In fact, the only polar protein that has been

found in these species is the PINA protein of the moss Physcomi-

trella patens that shows polar localization in tip-growing cells, and

bi-polar localization in leafy tissues (Viaene et al., 2014) distinct

from the unique polar patterns in flowering plants (Gälweiler

et al., 1998; Kania et al., 2014). In summary, the mechanisms

that establish and integrate polarity in plants remain elusive, and

it is even less clear whether plant polarity systems bear any simi-

larity to polarity-generating signaling pathways in animals.

We recently discovered a family of five paralogs called SOSEKI

(SOK1–SOK5) in the flowering plant Arabidopsis thaliana. Each of

these proteins displays robust polar edge localization in multiple

cell types throughout development. Polar localization of SOSEKI

proteins involves two conserved domains: a central domain

required formembraneassociation that dictates localization topo-

lar edges, and anN-terminal domain required for focused localiza-

tion at these edges (Yoshida et al., 2019). The N-terminal domain

was proposed to contain a DIX domain-like fold, hinting at similar-

ities between animal and plant cell polarity systems. Here, we
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discover orthologs of SOSEKI proteins across all land plants,

and we show that paralogs in two bryophyte species also display

polar edge localization. Furthermore, we use structural and

biochemical analysis to establish that this ancient protein family

contains a bona fide DIX domain—constituting the closest struc-

tural relatives of the Dishevelled DIX domain—and that these do-

mains, like Dishevelled DIX, undergo concentration-dependent

head-to-tail polymerization. We also use cross-kingdom assays

to reveal functional equivalence between Dishevelled and plant

DIX domains. Notably, the likely origin of DIX domains can be

traced tounicellular eukaryoticancestors.Collectively, our insights

suggest an ancient origin of a phase-separatingbiochemical para-

digm underlying cell polarity in animals and plants.

RESULTS

SOSEKI Proteins Are Shared across Land Plants
The genome of the flowering plant Arabidopsis thaliana encodes

five SOSEKI proteins, each of which shows polar localization

during development (Yoshida et al., 2019). To identity other

SOSEKI proteins in the plant kingdom, we searched the OneKP

dataset (Matasci et al., 2014; Wickett et al., 2014) using a bio-

informatic pipeline as previously described (Mutte et al., 2018).

This dataset encompasses RNA sequencing (RNA-seq) tran-

scriptome assemblies from more than a thousand plants spe-

cies, including both land plants and their aquatic sister group,

the green algae (Matasci et al., 2014; Wickett et al., 2014).

Each of the five Arabidopsis SOSEKI paralogs (AtSOK1–

AtSOK5) was used as query for BLAST searches of the OneKP

dataset. To recover more distantly related sequences, we also

searched the genome of the early-diverging liverwort plant

Marchantia polymorpha (Bowman et al., 2017). This identified a

single SOSEKI-like sequence (MpSOK), which was used for

additional OneKP searches.

SOSEKI-related sequences are widespread throughout land

plants, and we thus subjected them to phylogenetic analysis.

The rich species sampling in the OneKP dataset, with multiple

species in each major taxonomic clade, allowed us previously

to infer the plausible number of ancestral gene copies within a

number of gene families at the divergence of each lineage (Mutte

et al., 2018). Applying this strategy to SOSEKI proteins, we found

these to be limited to landplants, and no clear homologs could be

identified in algal sister groups (Figures 1A and 1B). Thus, it is

likely that SOSEKI proteins are limited to land plants, but more

genome-based information will be required to confirm their

absence in algae. Indeed, a single SOSEKI ancestor must have

existed until a first duplication gave rise to SOK1 and SOK2–

SOK5 precursors (Arabidopsis nomenclature) in the common

ancestor of ferns and seed or flowering plants (Figures 1A and

1B). Subsequent duplications in flowering plants increased the

number of paralogs (Figure 1A and 1B). Because RNA-seq tran-

scriptome assemblies tend to miss genes that are weakly ex-

pressed in sampled tissue, we also searched curated genome

sequencesof 107angiosperms, sevengymnosperms, a single ly-

cophyte, and two bryophyte species (https://bioinformatics.psb.

ugent.be/plaza/). Strikingly, none of the investigated land plant

species lacksSOSEKI genes (Table S1), which indicates a funda-

mental function of these genes in all land plants.

https://bioinformatics.psb.ugent.be/plaza/
https://bioinformatics.psb.ugent.be/plaza/
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Figure 1. SOSEKI Proteins Are Ancient

Polarity Proteins

(A) Maximum Likelihood phylogenetic tree of

SOSEKI sequences in land plants.

(B) Inferred scenario of SOSEKI gene family evo-

lution based on extended phylogeny. Dots, in-

ferred ancestral gene number at each point of

divergence of major land plant groups; numbers

on top, Arabidopsis SOSEKI gene nomenclature;

numbers on the right, estimated time of diver-

gence in millions of years (MYA).

(C–G) Representative confocal images of Phys-

comitrella patens expressing (C and D) PpSOK4-

Citrine in (C) protonema or (D) gametophore bud,

or (E–G) PpSOK2-Citrine in (E) protonema, (F)

gametophore bud, or (G) leafy gametophore

(magenta, mCherry-Tubulin).

(H) Localization of Citrine-MpSOK, (yellow) ex-

pressed from the 35S promoter in a Marchantia

polymorpha gemma (magenta: chloroplast auto-

fluorescence). Scale bars, 25 mm (C–G), 10 mm (H).

See also Figure S1 and Table S1.
SOSEKI Proteins Are Ancient Polar Proteins
All fiveArabidopsisSOSEKI proteins showpolar localization, but it

is unclear whether this reflects an ancestral or derived property.

To address this, we determined the subcellular localizations of

SOSEKI proteins in two bryophyte species. We first localized

four of the nine SOSEKI proteins found in themossPhyscomitrella

patens (named PpSOK). All PpSOK genes, including one encod-

ing a truncated protein, are derived from a single ancestral bryo-

phyte genebyduplicationswithin themoss ancestor, and are thus

all co-orthologous toAtSOK genes (Figure S1A).We selected four

genes for which expression had beendocumented (Ortiz-Ramı́rez

et al., 2016) (http://bar.utoronto.ca/efp_physcomitrella/cgi-bin/

efpWeb.cgi) for genomic tagging with a C-terminal mCitrine fluo-

rescent protein by homologous recombination.

Three of the four PpSOK proteins are expressed during the

filamentous stage (protonema) of Physcomitrella development.

In the tip-growing and branching cells, two of these (PpSOK1,

PpSOK3) are diffuse throughout the cytosol and nucleus (Figures

S1B and S1D), while the truncated PpSOK4 marks the newly

formed cell walls (Figure 1C). The fourth (PpSOK2) is only ex-
pressed after the switch from filamentous

to three-dimensional growth (Figure 1E

and 1F). In young gametophore buds,

PpSOK2 shows coordinated localization

limited to the lower inner edge of bud

cells (Figure 1F). In the leafy gameto-

phores that develop from these buds, co-

ordinated polarized PpSOK2 localization

points to the leaf base and away from

the leaf margin (Figure 1G). Following

the switch from filamentous to three-

dimensional growth, we detect a weak

cytosolic signal for PpSOK1 and PpSOK3

in young gametophore buds (Figures S1C

and S1E) while PpSOK4 remains local-

ized to the cell plate (Figure 1D). Because
the apical cells in young buds divide in a polarized fashion (Har-

rison et al., 2009), localization of SOSEKI proteins to newly

formed walls in these buds will result in basal polar localization

in the apical-most cell (Figure 1D).

Two of the four PpSOK proteins did not show polar localiza-

tion, which is likely a consequence of loss of polarity after gene

duplications. However, it is also possible that the ancestral

state was non-polar and some of the PpSOK proteins and all

Arabidopsis SOK proteins independently gained polarity. To

test if polarity is retained in a species that has only a single

SOSEKI protein, we localized the single Marchantia polymorpha

MpSOK protein. Because fluorescence was too weak to be de-

tected when Citrine was fused to the C terminus of MpSOK in the

context of a genomic fragment with �4 kb of endogenous pro-

moter (not shown), we expressed a Citrine-MpSOK protein

from the 35S promoter. In these lines, we observed clear polar

localization in gemmae (Figure 1H), that appeared coordinated

among cells.

In summary, the only Marchantia SOSEKI protein, and two of

the four tested Physcomitrella SOSEKI proteins show polarized
Cell 180, 427–439, February 6, 2020 429
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Figure 2. SOSEKI Proteins Have a Characteristic Domain Architecture

(A) Phylogeny and conserved domain topology of land plant SOSEKI proteins; #, degenerated motif.

(B–G) Representative confocal images of root tips, revealing subcellular localizations of WT (B), C233A/G234A mutant (D), C307A/C310A mutant (F), SOK1-YFP

and wild-type (C), C303A mutant (E), and E356Q/E359Q mutant (G) SOK5-YFP as indicated in panels. Insets: magnifications in false color, highlighting apico-

lateral SOK1-YFP and lateral SOK5-YFP localizations; underneath, false color scale; magenta, propidium iodide counterstain. The percentage of transgenic

individuals with cell division orientation defects and number of transgenics (%/n) are indicated on the left of (B, D, and F). Scale bars, 10 mm (B–G).

See also Figure S2.
localizations similar to their Arabidopsis counterparts. Notably,

these three species are separated by 450 million years of evolu-

tion (Rensing et al., 2008), and therefore polar localization ap-

pears to be an ancestral property. Thus, SOSEKI proteins belong

to an ancient polarity system common to all land plants.

SOSEKI Polarity Relies on Highly Conserved Elements
Mining the full set of land plant SOSEKI sequences for conserved

elements, we uncovered a common domain topology, including a

prominent N-terminal signature domain (part of the DUF966 Inter-

pro domain; https://www.ebi.ac.uk/interpro/entry/IPR010369)

(Figure 2A). Further downstream, SOSEKI proteins exhibit an

invariant CG motif (Figures 2A and S2A) predicted to be a target

site for palmitoylation (Ren et al., 2008), thus potentially conferring

membrane association. Within their C termini, they exhibit a

conserved domain that can be divided into two distinct sub-

classes that are mutually exclusive among different orthologs

and paralogs (Figures 2A and S2A). One of these subclasses

bears a C2HC zinc finger (ZnF) signature, found in bryophyte

and lycophyte SOSEKI and in the AtSOK1 clade of vascular

plants, while the other subclass, found in AtSOK2–AtSOK5 ortho-

logs of vascular plants, bears a central KEY motif (Figures 2A and

S2A). However, several residues are highly conserved in both el-

ements (e.g., two invariant charged residues and five hydropho-

bic residues, including one of the ZnF signature cysteines; Fig-

ure S2A), suggesting a shared structural fold (to be called KEY/

ZnF domain). Notably, early land plants exclusively encode

ZnF-bearing SOSEKI orthologs, suggesting that AtSOK1 typifies

the ancestral protein.

We previously used a misexpression system based on the

RPS5A promoter to demonstrate the functional relevance of

the N-terminal DUF966 domain in AtSOK1 (Yoshida et al.,

2019). When misexpressed, SOK1 localizes to polar edges in
430 Cell 180, 427–439, February 6, 2020
any cell it is expressed in, and this misexpression induces aber-

rations in cell division orientation (Figure 2B; 70%of independent

transgenics show at least one abnormal cell division plane inme-

dian cross-section; n = 37), which serves as a readout for biolog-

ical activity of the SOK1 protein. To examine the functions of SO-

SEKI elements, we misexpressed tagged AtSOK1 (SOK1-YFP)

and AtSOK5 (SOK5-YFP) with the same system, which mediates

ubiquitous polar localization across the root meristem (Figures

2B and 2C). Point mutations of the CGmotif cause delocalization

of SOK1-YFP (C233A and C233A/G234A) and SOK5-YFP

(C303A) from cell membranes (Figures 2D, 2E, and S2B), indi-

cating that this motif is essential for membrane association.

Likewise, the C233A and C233A/G234A mutations in SOK1

also impaired its ability to alter cell division planes (Figure 2D;

18%; n = 45). However, we were unable to detect any changes

in the localization or biological activity of SOK1-YFP bearing a

mutant ZnF motif (C307A/C310A; Figure 2F; 62%; n = 61) nor

in SOK5-YFP bearing a mutant KEY motif (E356Q/E359Q; Fig-

ure 2G), suggesting that these motifs are either dispensable for

polar localization in our overexpression system, or that their

function is redundant with another SOSEKI element. We

conclude that the two most highly conserved elements of

SOSEKI proteins, their DIX-like domain and their CG motif,

have key functions in polar localization of SOSEKI proteins.

SOSEKI DIX Is Biochemically and Structurally
Equivalent to Dishevelled DIX
Previously, we found that the N-terminal part of the DUF966

domain of AtSOK1 is capable of homo-dimerization, and that it

may resemble the DIX domains of Dishevelled and Axin, based

on secondary structure predictions (Yoshida et al., 2019). The

Dishevelled DIX domain undergoes dynamic head-to-tail poly-

merization, which results in filamentous assemblies that can

https://www.ebi.ac.uk/interpro/entry/IPR010369
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See also Figure S2.
be observed by electron microscopy and in protein crystals

(Madrzak et al., 2015; Schwarz-Romond et al., 2007a). Polymer-

ization can also be detected by equilibrium ultracentrifugation or

size exclusion chromatography coupled tomulti-angle light scat-

tering (SEC-MALS) (Fiedler et al., 2011; Liu et al., 2011; Schwarz-

Romond et al., 2007a). To determine whether the previously

observed homo-dimerization of the putative DIX domain of

AtSOK1 reflects its ability to form polymers, we purified the do-

mains from various Arabidopsis and Physcomitrella SOSEKI

proteins, and from the single Marchantia SOSEKI paralog, for

analysis by SEC-MALS. Indeed, each of these formed oligomers

(Figure 3A), similarly to their animal counterparts (Fiedler et al.,

2011; Liu et al., 2011; Schwarz-Romond et al., 2007a). Impor-

tantly, oligomerization is concentration-dependent, with higher

concentrations leading to larger oligomers (Figure 3B).

Next, we attempted to crystallize these domains, but were un-

able to obtain diffracting crystals, presumably because of struc-

tural heterogeneity generated by rapid polymerization during

crystallization. Note that no structure of a wild-type (WT) Dishev-

elled DIX has been determined as yet, although multiple struc-

tures of domains bearing polymerization-blocking point muta-

tions have been solved (Liu et al., 2011; Madrzak et al., 2015;

Yamanishi et al., 2019a, 2019b). We thus used the structure of

the human Dishevelled-2 (DVL2) DIX domain (Madrzak et al.,

2015), to design a set of point mutations in the AtSOK4 domain

that are predicted to attenuate its polymerization (see below).

Crystallizing several of thesemutations, we succeeded in obtain-

ing diffracting crystals for D85A (equivalent to D78A in AtSOK1),

which severely attenuates polymerization (Figure 3B). We thus

solved the structure of this domain at 1.7 Å resolution (Table

S2), following labeling with selenomethionine to determine

phasing.
Like DVL2 DIX, the AtSOK4 domain

adopts a ubiquitin-like fold, with four b-

strands and one a-helix (Figure 4A). Strik-

ingly, its a-backbone almost perfectly su-

perimposes on that of DVL2 DIX, with a

root-mean-square deviation (RMSD) of
1.74 Å (Figure 4B). This was rather unexpected, given the limited

primary sequence conservation between the two domains

(19/93 residues; Figure S3). Indeed, this value is significantly

lower than the RMSD between DVL2 DIX and the PB1 domain

(e.g., of p62, 2.2 Å), the closest structural relative of DIX (Bienz,

2014), or between DVL2 DIX and the DIX-like domain of the

neuro-pathogenic protein TDP-43 (2.26 Å), a recently discovered

relative of DIX (Afroz et al., 2017). Like other DIX domains (Fig-

ure 4D), AtSOK4 DIX forms a helical filament in the crystal, via

head-to-tail interactions of individual monomers (Figure 4C).

The interface between individual monomers exhibits consider-

able hydrophobicity, and close hydrophobic interactions (e.g.,

W83-F81, W83-H34, W83-H36, Y84-F37) are likely to be crucial

for the DIX-DIX interaction, although hydrogen bonds (e.g., D85-

H36) are also likely to contribute (Figure 4E; recall that D85 was

mutated for structure determination). Nearly all these residues

are fully conserved, or even invariant, among land plant DIX do-

mains (Figure S3), suggesting that they are critical in mediating

polymerization. We conclude that the land plant SOSEKI pro-

teins contain bona fide DIX domains that are structurally and bio-

chemically equivalent to animal DIX domains.

DIX-Dependent Polymerization Is Required for Polar
Localization
To determine whether DIX-dependent SOSEKI polymerization is

functionally relevant in vivo, we designed point mutations in the

AtSOK1 DIX interface that are expected to impair polymeriza-

tion. We confirmed this by SEC-MALS, whereby themost severe

mutations produce monomers (Figure 3B). Using our root misex-

pression assay to test some of these polymerization-disabling

mutations (H29D/D78A and H29D/D78R) for their effects on

SOK1-YFP in transgenic Arabidopsis plants, we found that
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Figure 4. AtSOK4 Contains a Bona Fide DIX Domain

(A) Ribbon diagram of SOK4 DIX (blue, head; cyan, tail); D85A, polymerization-

disabling mutation facilitating crystallization (see text).

(B) Overlay of AtSOK4 DIX (blue) and DVL2 DIX (4WIP; wheat).

(C and D) Helical polymers of (C) AtSOK4 DIX and (D) DVL2 DIX as seen in

crystals, with widths and lengths of helical turns indicated.

(E) Interface between AtSOK4 DIX tail and head; dashed box: magnified view,

with close hydrogen bond between D33 (head) and K103 andW83 (tail) and p-

stacking between H34 (head) and W83 (tail) indicated (dotted lines).

See also Figure S3 and Table S2.
both double-mutations strongly reduced SOK1 polar localization

(Figures 3C, 3D, and S2C). Likewise, polymerization-impairing

mutations also reduced the ability of SOK1 protein to alter

cell division planes in the root (Figure 3D; 37%; n = 62). Thus,

the DIX-dependent polymerization of AtSOK1 is crucial for its

polar localization and biological activity in developing Arabidop-

sis plants.

Functional Equivalence between Dishevelled and Plant
DIX Domains
We next explored the functional equivalence between Dishev-

elled and Arabidopsis DIX, using a previously described cell-

based assay (Yamanishi et al., 2019b) allowing us to test whether

Arabidopsis DIX could substitute for DVL2 DIX. In mammalian

cells, DVL2 signalosomes are detectable as dynamic subcellular

puncta (Figure 5A) whose formation is abolished by polymeriza-

tion-disabling point mutations in the DIX domain (Bilic et al.,

2007; Schwarz-Romond et al., 2005). These puncta confer

Wnt/b-catenin signaling through the recruitment of the Axin

effector (Schwarz-Romond et al., 2007b). Deletion of the DIX

domain (DVL2DDIX) (Schwarz-Romond et al., 2005) or polymer-

ization-disabling mutations (M2M4; Figure 5A) (Yamanishi et al.,

2019b) abolish puncta formation. These puncta can, however,

be restored by inserting AtSOK DIX into DVL2DDIX (SOK1

chimera called DVL2DDIX-SOK1-DIX; Figure 5B). Yet, these

SOK1-DIX puncta do not colocalize with co-expressed Axin (Fig-

ure 5B) presumably because the Axin DIX domain cannot heter-

opolymerize with AtSOK1 DIX owing to pronounced differences

in their polymerization interfaces (Schwarz-Romond et al.,

2007a) (Figure 5B). However, Axin colocalization can be restored

by the addition of a point mutant DVL2 DIX domain that retains a
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normal tail surface (M4; Figure 5C) albeit not with a double

mutant DVL2 DIX domain whose head and tail surfaces bear

polymerization-disabling mutations (M2M4; Figure 5D).

As expected from its co-localization with Axin (Figure 5C),

the M4-bearing SOK1 chimera restores b-catenin-dependent

signaling activity in Dishevelled null mutant HEK293T cells (Gam-

mons et al., 2016b), as can be monitored by a b-catenin-depen-

dent transcriptional luciferase reporter called SuperTOP (Vee-

man et al., 2003), similarly to WT DVL2 (Figure 5E). However,

this activity is essentially abolished if the chimera bears a double

mutant M2M4 DVL2 DIX domain or a D78A mutant AtSOK1 DIX

domain (Figure 5E). The same is true for chimeras bearing DIX

domains from AtSOK3, AtSOK4, or MpSOK (Marchantia poly-

morpha SOSEKI) whose signaling activities are also inactivated

by corresponding polymerization-disabling D > Amutations (Fig-

ure 5E). These cross-kingdom complementation assays confirm

that a single intact DVL2 DIX surface is required for Axin interac-

tion and b-catenin-dependent signaling, as previously shown

(Yamanishi et al., 2019b). They establish the functional equiva-

lence of SOSEKI and DVL2 DIX domains with regard to signalo-

some assembly and activity.

We next asked if, in a reciprocal experiment, the human DVL2

DIX domain would be able to replace the Arabidopsis SOK1 DIX

domain. A chimeric SOK1 protein, in which its DIX domain was

replaced by DVL2 DIX, was misexpressed in Arabidopsis as a

C-terminal YFP fusion using the RPS5A promoter. The chimeric

SOK1 protein localized to its polar edge (Figure 5F) in a manner

that was indistinguishable from WT SOK1 (Figures 2B and 3C),

and clearly distinct from the apolar SOK1DIXmutant (Figure 3D).

Thus, the biochemical properties of the polymerizing DIX do-

mains in SOK1 and DVL2 are equivalent in the context of polar-

ization (SOK1), puncta formation and canonical Wnt signaling

(DVL2). Intriguingly, the human DVL2 DIX domain could also

functionally replace the SOK1 DIX domain in altering division

orientation (Figure 5F; 54%; n = 54), which suggests that this

function requires DIX domain polymerization, but not interac-

tions of the DIX domain with other plant-specific factors.

Dishevelled forms puncta, both in cultured cells (Figure 5A)

and in imaginal disc cells where it acts in PCP signalling (Axelrod,

2001; Strutt et al., 2016). Given the equivalence of their DIX do-

mains, we asked if SOK1 can also form puncta. SOK1 is first ex-

pressed in the early embryo (Möller et al., 2017; Yoshida et al.,

2019), and embryonic cells thus allow visualizing early stages

of polarization of SOK1. Indeed, high-resolution imaging of

SOK1-YFP, expressed from its natural promoter, in young Arabi-

dopsis embryos showed clear puncta at the membrane, and en-

riched in the polar edge domain (Figure 5G). We also examined

Marchantia MpSOK localization at high resolution and found

similar polar puncta (Figure 5H). Thus, the first step toward polar

SOK localization appears to involve the formation of puncta,

mediated by DIX domain polymerization, which likely subse-

quently coalesce.

Polymerization-Dependent Recruitment of the
ANGUSTIFOLIA Effector
We have shown that the DIX-dependent polymerization of

SOSEKI proteins is crucial for their polar localization in

plants and for signaling activity in functional cross-kingdom
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(A–D) Representative confocal images of COS-7 cells co-expressing FLAG-Axin with wild-type GFP-DVL2 (A), or various GFP-SOK1-DIX chimeras without DVL2

DIX domain (B) or with M4 (C) or M2/M4 (D) mutations in DVL2-DIX, as indicated in panels, fixed and stained with antibodies against FLAG (red in merges) or GFP

(green in merges). Inset: DVL2M2M4-GFP co-expressed with FLAG-Axin.

(E) SuperTOP reporter assays in Dishevelled null mutant HEK293T cells expressing DVL2-GFP or various GFP-SOK1-DIX chimeras, as indicated below graph

(see also cartoon in Figure 5E, andmain text; SOKDIX domains are abbreviated SOX here); shown are fold induction levels relative to DVL2-M2M4; data represent

the mean ± SEM (n = 6); *p < 0.0001 (one-way ANOVA) for comparison to respective WT DIX domain. Underneath: corresponding western blots indicating

expression levels (TUB, b-tubulin).

(F) Representative confocal images of SOK1-YFP carrying the DVL2 DIX domain, as in Figures 2B–2G. The percentage of transgenic individuals with cell division

orientation defects and number of transgenics (%/n) are indicated on the left.

(G and H) High-resolution images of (G) Arabidopsis SOK1-YFP puncta in an early Arabidopsis embryo, expressed from endogenous promoter, and (H)

Marchantia MpSOK in gemma. Scale bars, 5 mm (A–D), 10 mm (F), 5 mm (G), 10 mm (H).
complementation assays in mammalian cells. In animal cells,

polymerization of Dishevelled results in a drastic increase

(>1,000-fold) in local concentration, which increases its avidity

for Axin and thus enables recruitment of this low-affinity signaling

effector (Bienz, 2014). Thus, DIX polymerization is required to

overcome the weak affinity between the DIX domains of Dishev-

elled and Axin (Kd in the mid-micromolar range) (Fiedler et al.,

2011; Yamanishi et al., 2019b).

The effector proteins through which SOSEKI proteins carry out

their function are unknown, and the SOSEKI domains (Figure 2A)

do not provide any clues as to their identities. To identify SOSEKI

effectors, we used pull-downs and mass spectrometry on roots

from Arabidopsis seedlings in which SOK1-YFP was overex-

pressed from the RPS5A promoter. Pull-downs from the

pSOK1-SOK1-YFP line did not retrieve SOK1 proteins, likely
because of low protein abundance (Figure S4A). AtSOK1 was

affinity-purified from RPS5A-SOK1-YFP roots, in addition to

AtSOK4 (presumably reflecting hetero-polymerization with

SOK1-YFP) (Figure 6A). Interestingly, SOK1-YFP pull-down also

recovered ANGUSTIFOLIA (AN) (Figure 6A), the plant ortholog

of mammalian C-terminal binding protein (CtBP). CtBP is an

NAD/NADH-binding metabolic sensor (Fjeld et al., 2003) that is

recruited into variousmultiprotein complexes, including transcrip-

tional repressor complexes (Chinnadurai, 2002), and adenoma-

tous polyposis coli, a component of the Axin degradosome

(Hamada and Bienz, 2004). The molecular function of Arabidopsis

ANGUSTIFOLIA remains poorly defined, a mutation in an causes

defects in cell shape, cell division orientation, and organ shape

(Bai et al., 2013; Tsuge et al., 1996). Affinity purification of

SOK2-YFP and SOK3-YFP likewise recovered each tagged
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(A) Proteins co-purifying with SOK1-YFP stably expressed in transgenic RPS5A-SOK1-YFP Arabidopsis roots; x axis, protein enrichment (fold-change [FC]) of

proteins co-purified with SOK1-YFP relative to samples from non-transgenic roots; y axis, statistical significance of enrichment (p value of false discovery rate

[FDR]; Student’s t test; n = 3 replicates). 41 proteins were >0.3-fold FC and >1.301 FDR, including SOK1, SOK4, and AN.

(B–C00) Accumulation of AN-tdTomato in root tip (B and B0) and globular-stage embryo (C). (B) shows an overview and (B0) a higher magnification. (C) shows a high

magnification confocal image, (C0) a bright field image, and (C00) a confocal overview image. Color scale in (B0) indicates false colors used (low, left; high, right).

(D–E00) Co-localization of AN-tdTomato and SOK1-YFP in RPS5A-SOK1-YFP roots in control (D) or mannitol-treated (E) conditions. (F) Co-localization of
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See also Figure S4.
SOK protein, as well as other SOK proteins and ANGUSTIFOLIA

(Figures S4B andS4C). ANGUSTIFOLIA thus seemedan excellent

candidate for an effector of SOSEKI in orienting cell division.

To investigate ANGUSTIFOLIA localization, we generated a line

in which ANGUSTIFOLIA was C-terminally fused to tdTomato,

and driven from the endogenous ANGUSTIFOLIA promoter

(AN-tdTomato). This fusion protein is functional, as it comple-

ments the characteristic two-branched trichome defects in an-1

mutant leaves (Figures S4D–S4F). We observed diffuse fluores-

cent signals from AN-tdTomato throughout root cells, in addition

to clear enrichment near cell edges (Figure 6B, arrowheads).

When analyzed in the embryo, membrane-associated AN-

tdTomato puncta could be clearly distinguished (Figure 6C).

AN could either act as a regulator of SOK localization, or it may

represent an effector whose localization depends on SOK pro-

teins. To determine if SOK1-localization requires the AN protein,

we localized SOK1-YFP (expressed from the RPS5A promoter)

in an an loss of function mutant. Neither membrane association

nor polar localization of SOK1-YFP protein was obviously altered

in the an mutant (Figures S4G and S4H), suggesting that AN is

not a regulator of SOK1 localization.

Conversely, when introduced into RPS5A-SOK1-YFP lines,

some of the AN-tdTomato signals accumulate at the cell edges

marked by SOK1-YFP (Figure 6D; see Figure S4I for negative

control), likely owing to recruitment by the misexpressed

SOK1-YFP. To test the dependence of AN-tdTomato localization
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on SOK1 more directly, we treated roots with mannitol, displac-

ing SOK1 from the polar membrane edge (Yoshida et al., 2019).

When imaged soon after mannitol treatment, SOK1 was dis-

placed from the polar edge in some, but not all cells (Figure 6E).

Co-localizing AN-tdTomato with SOK1-YFP under these condi-

tions showed strong correlation between AN-tdTomato and

SOK1-YFP localization (Figure 6E), revealing an intimate interac-

tion between them.

To determine whether the polar AN-tdTomato localization

requires DIX-dependent SOK1 polymerization, we examined

AN-tdTomato in lines expressing SOK1-YFP without its DIX

domain (RPS5A-SOK1-DDIX-YFP) (Yoshida et al., 2019), whose

SOK1-YFP is delocalized from the cell edges (Figure 6F). In these

lines, AN-tdTomato no longer co-localized with SOK1-YFP (Fig-

ures 6F and S4I). Thus, the DIX-dependent polymerization of

AtSOK1 appears to be required for ANGUSTIFOLIA recruitment,

reminiscent of Dishevelled, whose DIX-dependent polymeriza-

tion mediates recruitment of its Axin effector into Wnt signalo-

somes by increasing its avidity for this effector. This suggests

a deep functional analogy regarding the assembly of protein

condensates by plant SOSEKI and animal Dishevelled proteins.

TheDIXDomainCanBeTracedBack toBasal Eukaryotes
We wondered whether we could identify DIX domain-containing

proteins in other eukaryotic lineages, by extending our phyloge-

netic analysis beyond animals and plants. We used broad fungal
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(B) SEC-MALS of purified DIX domains from Cryptosporidium parvum (CpDIX), Tetrahymena thermophila (TtDIX), Paramecium tetraurelia (PtDIX), Blastocystis

hominis (BhDIX), Ectocarpus siliculosus (EsDIX), or Plasmodium falciparum (PfDIX); curves and line traces as in main Figure 3A.

(C) SuperTOP reporter assays as in main Figure 5E. DIX domains in chimeras are from Blastocystis hominis (BhDIX) or Cryptosporidium parvum (CpDIX); data

represent the mean ± SEM (n = 6); *p < 0.0001 (one-way ANOVA) for comparison to respective WT DIX domain. Underneath: corresponding western blots

indicating expression levels (TUB, b-tubulin).
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genomes (MycoCosm) (Grigoriev et al., 2014) and unicellular

eukaryote transcriptome datasets (MMETSP) (Keeling et al.,

2014) to search for DIX-like sequences, using AtSOK1-5,

MpSOK, and DVL2 DIX domains as queries. While our searches

of the fungal kingdom were negative, we readily identified DIX-

like sequences in SAR (Stramenopiles, Alveolates, Rhizaria)

group organisms (Figure 7A), including the human parasites

Plasmodium, Blastocystis, and Cryptosporidium, but also the

plant pathogen Phytophthora, as well as brown algae and the

ciliates Paramecium and Tetrahymena. However, many SAR

group species lack DIX-like domains, as indicated by compre-

hensive searches of all fully sequenced and annotated genomes

of SAR group organisms. Importantly, none of the DIX-like se-

quences in SAR group organisms are associated with any of

the conserved domains found in plant SOSEKI or Dishevelled

(Figure 7A), suggesting that they may operate in distinct func-

tional contexts. However, SAR group DIX domains are clearly

capable of polymerization, as indicated by SEC-MALS analysis

of purified DIX domains from Ectocarpus siliculosus (brown

alga), Cryptosporidium parvum (apicomplexan), Paramecium

tetraurelia (ciliate), and three other species (Figure 7B). Further-

more, the in vitro polymerization of these DIX domains depends
on their concentration (Figure S5A) and is abrogated by muta-

tions in conserved residues of their putative DIX polymerization

interfaces (Figures S5B–S5D). Thus, SAR DIX domains are

capable of undergoing concentration-dependent head-to-tail

polymerization like their animal and plant counterparts.

To determine whether these SAR DIX domains can also com-

plement DVL2 DIX, we used the DIX substitution assays as

described above (Figure 5), but replacing DVL2 DIX with SAR

DIX, monitoring DIX-dependent puncta formation, and signaling

to b-catenin. Indeed, WT, but not polymerization-defective DIX

domains, from Blastocystis and Cryptosporidium can fully substi-

tute for DVL2DIX in terms of b-catenin signaling (Figures 7C, S5C,

and S5D). Thus, SOSEKI DIX and SAR DIX domains are function-

ally equivalent to DVL2DIX regarding their biochemical properties

and signaling activity, suggesting that the SAR DIX domains

reflect the ancestral version of animal and plant DIX domains.

DISCUSSION

Cell polarity is essential for the development of multicellular life.

Proteins establishing polarity and their pathways have been

studied in detail in animals, but there is limited knowledge about
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polarity formation in plants. In this latter kingdom, the translation

of pre-mitotic cell polarity to the orientation of cell division is of

fundamental importance because the rigid cell wall prevents

movement or reorientation of the cell. Although the components

of polarity signaling pathways in animals such as Wnt-Dishev-

elled are missing from plant genomes (Kania et al., 2014), we

recently discovered the Arabidopsis SOSEKI proteins as polarly

localized proteins (Yoshida et al., 2019). Here, we establish that

SOSEKI proteins are highly conserved in all land plants and likely

represent components of an ancient polarity system. Further-

more, we show that they contain a bona fide DIX domain whose

polymerization is essential for their localization and cellular func-

tion. This domain is structurally and functionally equivalent to the

DIX domain of Dishevelled and is required for the polar recruit-

ment of the effector protein ANGUSTIFOLIA. Thus, the paradigm

of dynamic protein polymerization conferring high local concen-

trations, initially derived from the study of the polarity protein

Dishevelled (Bienz, 2014; Gammons and Bienz, 2018), also un-

derlies cell polarity in plants.

Land Plants Have a Common Polarity System
Various polarly localized proteins have been described in plants,

decorating uniquemembrane domains in different cell types (Ka-

nia et al., 2014). Based on studies that mostly used PIN auxin

hormone transport proteins and Boron transporters BOR1 and

NIP5;1 (Geldner et al., 2001; Kania et al., 2014; Takano et al.,

2010), a model has emerged in which exocytosis and endocy-

tosis are balanced to maintain polar protein localization. Further-

more, studies on Rop GTPases identified a dynamic mechanism

for local outgrowth in various cell types, based on local effects on

the cytoskeleton (Yang and Lavagi, 2012). Given that much of

this research was performed in a single species—the flowering

plant Arabidopsis thaliana—a largely unexplored question is to

what degree polarity systems are universal among land plants.

Localization of PIN proteins in the moss Physcomitrella revealed

bi-polar localization in leaf cells and tip localization in tip-growing

cells, distinct from the polarity patterns of orthologous Arabidop-

sis PIN proteins (Gälweiler et al., 1998; Geldner et al., 2001;

Viaene et al., 2014).

Using phylogenomic analysis, we found that all land plants for

which genome sequence information is available have SOSEKI

proteins, defined by common conserved elements that are rele-

vant for their localization and activity in Arabidopsis. In addition,

localization of Physcomitrella and Marchantia SOSEKI proteins

show distinct edge polarity coordinated among cells, highly

reminiscent of the polar localization of SOSEKI proteins in Arabi-

dopsis. This suggests that SOSEKI proteins are ancient polarity

proteins that reflect a common polarity reference system in all

land plants. We note that their biological function has so far

been deduced from overexpression studies in Arabidopsis and

thus requires confirmation by loss-of-function genetics.

However, the similar patterns and stability of their polar localiza-

tions inArabidopsis (Yoshida et al., 2019) andPhyscomitrella and

Marchantia (Figures 1C–1G) suggest a fundamental role of

SOSEKI proteins as polarity landmarks or readouts. Indeed,

SOSEKI proteins can only be delocalized by osmotic or mechan-

ical manipulations affecting the cell wall (Yoshida et al., 2019),

and their polar localizations are inert and virtually refractory to
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experimental perturbation. In contrast, most other Arabidopsis

proteins previously implicated in cell polarity show highly dy-

namic polar localization that is readily perturbed by membrane

trafficking or cytoskeletal remodeling (Geldner et al., 2001; Kania

et al., 2014; Takano et al., 2010). Therefore, based on their deep

conservation and robust localization patterns, SOSEKI proteins

are excellent candidates for components of signaling pathways

that determine planar cell polarity.

A Conserved Biochemical Paradigm Underlies Cell
Polarity
By determining the crystal structure of AtSOK4 DIX, we estab-

lished that this domain is the closest known relative of the

DVL2 DIX domain. Our evidence indicates that the polymeriza-

tion of this domain is required for polar localization of SOSEKI

proteins in Arabidopsis. Furthermore, the ability of this domain

to substitute for the DVL2 DIX domain in a cross-kingdom

complementation assay indicates their functional equivalence.

Dishevelled depends on DIX-dependent polymerization to attain

a high local concentration, to acquire the high avidity needed to

recruit its low-affinity signaling effector Axin to the Wnt signalo-

some (Gammons and Bienz, 2018). Similarly, Arabidopsis

SOK1 protein depends on its DIX domain for recruitment of

ANGUSTIFOLIA, a putative SOSEKI effector, to a polar mem-

brane domain. It thus appears that the same paradigm operates

in animal and plants for assembly of protein condensates with

high avidity for effector proteins.

Polar Domain Formation Depends on DIX-Dependent
Polymerization
Cell polarity requires the definition of cellular subdomains, often

at the plasma membrane. Lateral diffusion along the membrane

is highly unfavorable to maintaining polar localization and must

therefore be limited. This could be achieved by physical barriers,

such as tight junctions in animals (Shin et al., 2006) and cell wall

modifications in plants (Lee et al., 2013; Martinière et al., 2012).

However, physical diffusion barriers will act as generic limitations

to the diffusion of all membrane-associated proteins and are

therefore useful only in cells with long-term fixed organization.

It is difficult to imagine how such barriers would be compatible

with flexible development in dividing cells whose architecture

is fluid.

Polymerization of polarity proteins may provide an alternative

mechanism to limit their diffusion. Indeed, mutating the DIX

domain of SOK1 leads to its diffusion over a much wider mem-

brane domain and its delocalization from the polar edge. This

suggests that cell polarity is achieved in two steps: recruitment

of SOSEKI proteins to a wide membrane domain, followed by

their polymerization, which tightens their localization to a polar

patch. Visualization of early stages of SOSEKI polarization sug-

gests that this second step may in fact include a stage at which

membrane-associated puncta coalesce into broad patches, that

are tightened to sharp edge localization. Polymerization of

SOSEKI proteins may therefore serve a dual function, namely

(1) limiting diffusion to achieve tight polar localization, and (2)

generating a high local protein concentration to attain a high

avidity for low-affinity effector proteins. Notably, the latter is

contingent on the former, which ensures that recruitment of



effectors occurs subsequent to SOSEKI protein polymerization

at the membrane, rather than at the lower SOSEKI protein

concentration in the cytosol. Polymerization therefore provides

an elegantmechanism to orchestrate the polar localization of po-

larity-determining proteins and the subsequent recruitment of

their ligands that effect cell polarity.

Notably, several polarity proteins in animals such as Par pro-

teins and atypical protein kinase C bear a PB1 domain (Hirano

et al., 2005), a structural relative of the DIX domain, and evidence

suggests that this domain also engages in head-to-tail polymer-

ization (Bienz, 2014). Therefore, these PB1 domains, like the

SOSEKI DIX domains, may have dual functions in conferring

both polar localization and high local concentration for effector

recruitment via polymerization.

The DIX Domain Has an Ancient Origin
The DIX domain was thought to be limited to Dishevelled and

Axin in the Wnt signaling pathway. However, our study led to

the discovery of bona fide DIX domains in plants and unicellular

SAR group eukaryotes. Intriguingly, other eukaryotic kingdoms

such as fungi and green algae do not encode any DIX domains.

Furthermore, these domains are only present in a subset of SAR

group organisms. The DIX domain may have originated in basal

eukaryotes whereby only some SAR organisms retained the

ancestral domain, evolving separately into plant and animal

DIX domains. Alternatively, the domain originated in SAR

organisms, and was passed on to plants and animals by hori-

zontal gene transfer. In support of the latter, several SAR group

organisms such as Phytophthora and Cryptosporidium are par-

asites or pathogens of plant or animals that potentially engage

in horizontal gene transfer. In either scenario, it appears that

plants and animals have independently evolved an ancestral

DIX domain from basal eukaryotes to adapt it to their own

polarity systems.
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Wendrich, J.R., Boeren, S., Möller, B.K., Weijers, D., and De Rybel, B. (2017).

In Vivo Identification of Plant Protein Complexes Using IP-MS/MS. Methods

Mol. Biol. 1497, 147–158.

Wickett, N.J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N.,

Ayyampalayam, S., Barker, M.S., Burleigh, J.G., Gitzendanner, M.A., et al.

(2014). Phylotranscriptomic analysis of the origin and early diversification of

land plants. Proc. Natl. Acad. Sci. USA 111, E4859–E4868.

Wu, M., and Herman, M.A. (2007). Asymmetric localizations of LIN-17/Fz and

MIG-5/Dsh are involved in the asymmetric B cell division in C. elegans. Dev.

Biol. 303, 650–662.

Yamanaka, H., and Nishida, E. (2007). Wnt11 stimulation induces polarized

accumulation of Dishevelled at apical adherens junctions through Frizzled7.

Genes Cells 12, 961–967.

Yamanishi, K., Fiedler, M., Terawaki, S., Higuchi, Y., Bienz, M., and Shibata, N.

(2019a). A direct heterotypic interaction between the DIX domains of Dishev-

elled and Axin mediates signaling to b-catenin. Sci. Signal. 12, eaaw5505.

Yamanishi, K., Sin, Y., Terawaki, S.I., Higuchi, Y., and Shibata, N. (2019b).

High-resolution structure of a Y27W mutant of the Dishevelled2 DIX domain.

Acta Crystallogr. F Struct. Biol. Commun. 75, 116–122.

Yang, Z. (2008). Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev.

Biol. 24, 551–575.

Yang, Z., and Lavagi, I. (2012). Spatial control of plasma membrane domains:

ROP GTPase-based symmetry breaking. Curr. Opin. Plant Biol. 15, 601–607.

Yang, Y., and Mlodzik, M. (2015). Wnt-Frizzled/planar cell polarity signaling:

cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31,

623–646.

Yoshida, S., van der Schuren, A., van Dop, M., van Galen, L., Saiga, S., Adibi,
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Critical Commercial Assays
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Deposited Data

SOK4 PDB file This paper https://www.rcsb.org/structure/6RSN

Plant SOK phylogeny This paper https://itol.embl.de/shared/dolfweijers

Experimental Models: Cell Lines

HEK293T ATCC Cat#CRL-3216

COS-7 ATCC Cat#CRL-1651

Dvl TKO Gammons et al., 2016b N/A

Experimental Models: Organisms/Strains
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Arabidopsis thaliana mutant an-1 Tsukaya et al., 1994 N/A

Physcomitrella patens PEF1a::mCherry-a-tubulin Kosetsu et al., 2017 N/A
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M. polymorpha 35S::mCitrine-MpSOK This paper N/A
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Arabidopsis thaliana Col-0 pSOK1::SOK1-YFP Yoshida et al., 2019 N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK1-YFP Yoshida et al., 2019 N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK2-YFP Yoshida et al., 2019 N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK3-YFP Yoshida et al., 2019 N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK1

lacking DIX-YFP

Yoshida et al., 2019 N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK1 C233A-YFP This paper N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK1

C233A/G234A -YFP

This paper N/A

Arabidopsis thaliana Col-0 pRPS5A:: SOK1

C307A/C310A-YFP

This paper N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK5 C303A-YFP This paper N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK5

E356Q/E359Q-YFP

This paper N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK1

H29D/D78A-YFP

This paper N/A

Arabidopsis thaliana Col-0 pRPS5A::SOK1

H29D/D78R-YFP

This paper N/A

Arabidopsis thaliana Col-0 pRPS5A:: hDvl2DIX SOK1-YFP This paper N/A

Arabidopsis thaliana Col-0 pAN::AN-TdTomato This paper N/A

Arabidopsis thaliana an-1 pAN::AN-TdTomato This paper N/A

Arabidopsis thaliana Col-0 pAN::AN-TdTomato

and pRPS5A::SOK1-YFP

This paper N/A

Arabidopsis thaliana Col-0 pAN::AN-TdTomato

and pRPS5A::SOK1 lacking DIX-YFP

This paper N/A

Oligonucleotides

All oligonucleotides are listed in Table S4 This paper N/A

Recombinant DNA

Plasmid: pCMV-tag2b-Axin Fiedler et al., 2011 N/A

Plasmid: pEGFP-DVL2 Fiedler et al., 2011 N/A

Plasmid: pTA-Luc m50 Super 8x TopFLASH Veeman et al., 2003 Addgene Cat#12456

Plasmid: pRL-CMV Renilla luciferase Promega Cat#E2261

Plasmid: pCTRN-nptII Hiwatashi et al., 2008 GenBank AB697058

Plasmid: pCTRN-nptII-PpSOK1-RF+LF This paper N/A

Plasmid: pCTRN-nptII-PpSOK2-RF+LF This paper N/A

Plasmid: pCTRN-nptII-PpSOK3-RF+LF This paper N/A

Plasmid: pCTRN-nptII-PpSOK4-RF+LF This paper N/A

Plasmid: pRPS5A::AtSOK1-YFP Yoshida et al., 2019 N/A

Plasmid: pRPS5A::AtSOK2-YFP Yoshida et al., 2019 N/A

Plasmid: pRPS5A::AtSOK3-YFP Yoshida et al., 2019 N/A

Plasmid: pRPS5A::AtSOK1 lacking DIX-YFP Yoshida et al., 2019 N/A

Plasmid: pRPS5A::AtSOK1 C233A-YFP This paper N/A

Plasmid: pRPS5A::AtSOK1 C233A/G234A -YFP This paper N/A

Plasmid: pRPS5A:: AtSOK1 C307A/C310A-YFP This paper N/A

Plasmid: pRPS5A::AtSOK5 C303A-YFP This paper N/A

Plasmid: pRPS5A::AtSOK5 E356Q/E359Q-YFP This paper N/A

Plasmid: pRPS5A::AtSOK1 H29D/D78A-YFP This paper N/A

Plasmid: pRPS5A::AtSOK1 H29D/D78R-YFP This paper N/A

Plasmid: pRPS5A:: DvlDIX AtSOK1-YFP This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: pAN::AN-TdTOMATO This paper N/A

Plasmid: pPLV28 De Rybel et al., 2011 N/A

Plasmid: pPLV23 De Rybel et al., 2011 N/A

Plasmid: 35S-mCitrine-MpSOSEKI This paper N/A

Software and Algorithms

Phylogenetic Analysis pipeline Mutte et al., 2018 N/A

MAFFT v7 (ver7.123b) National Institute of Advanced

Industrial Science and

Technology (Japan)

https://mafft.cbrc.jp/alignment/server/

Phyutility v2.2.6 Smith and Dunn, 2008 https://code.google.com/archive/p/phyutility/

downloads

tBLASTn module at JGI MycoCosm Joint Genome Institute (USA) https://mycocosm.jgi.doe.gov/fungi

RAxML v8.1.20 Stamatakis, 2014 https://github.com/stamatak/standard-RAxML

PartitionFinder2 Lanfear et al., 2017 https://github.com/brettc/partitionfinder/

releases/tag/v2.1.1

MEME motif discovery program (ver 4.12.0) Bailey et al., 2009 http://meme-suite.org/doc/download.html

MaxQuant software package v1.6.8.0 Tyanova et al., 2016a https://www.maxquant.org

Perseus v1.6.2.3. Tyanova et al., 2016b https://www.maxquant.org

R R Foundation https://www.r-project.org/

Other

OneKP consortium database Matasci et al., 2014 http://sites.google.com/a/ualberta.ca/onekp/

Phytozome ver11 Joint Genome Institute (USA) https://phytozome.jgi.doe.gov/pz/portal.html

MMETSP data Keeling et al., 2014 N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Requests for further information or reagents should be directed to the lead contact, Dolf Weijers (dolf.weijers@wur.nl).

There are/are no restrictions on the availability of materials and reagents mentioned in this work.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant model: Arabidopsis thaliana

For all experiments on Arabidopsis thaliana the Col-0 ecotype was used. The an-1 mutant line is also in Col-0 background and was

described (Tsukaya et al., 1994). Identity of this mutant line was confirmed by observing trichome and leaf morphology defects. The

wild-type pSOK1::SOK1-YFP, pRPS5a::SOK-YFP lines and the pRPS5a::SOK1 lacking DIX domain-YFP have previously been

described (Yoshida et al., 2019). Mutant pRPS5a::SOK-YFP lines have been generated for this study, see Method Details sec-

tion below.

Seedswere sterilized in 25% thin bleach (local supermarket brand, < 5%sodium hypochlorite), 75%ethanol for 8minutes, washed

twice in 70% ethanol and once in 96% ethanol. After drying, seeds were plated on half strength Murashige and Skoog (½MS) with 10

g/l sucrose and supplemented with 15mg/l Phosphinothricin or 50 mg/l Kanamycin if selection was required. The seeds were strat-

ified at 4�C for 1-2 days before transferring the plates to the growth room. Plants were cultured at 22�C, 75%humidity under long-day

conditions (16h light, 8h dark). Seedlings were imaged or harvested for IP-MS/MS at 5-6 days after transfer to the growth room. To

obtain mature plants, seedlings were transferred to soil and continued to grow under the conditions described.

Plant model: Physcomitrella patens

All Physcomitrella patens (ecotype ‘Gransden’) (Engel, 1968; Ashton and Cove, 1977) strains expressing PpSOK-Citrine fusions used

in this study were generated in a background line expressing mCherry-a-tubulin driven from the PpEF1a promoter (Kosetsu et al.,

2017). Plants were grown on BCDATmedium under continuous light at 25�C until transformation. Initial transformants were selected

on BCDAT plates supplemented with 20 mg/l G418. After three weeks of release from selection, plants were reinoculated on

G418-containing medium to select for stable transformants. Transformed plants were grown under the same temperature and light

conditions as Arabidopsis, as described above. For propagation, plants were homogenized with a razor blade, and the fragments

were plated on fresh BCD plates. To observe naturally occurring buds, plants were grown for 3-5 weeks until enough buds had
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formed for observation. To enhance rates of 3D bud production, plants were first homogenized and grown on BCDmedium overlaid

with cellophane for one week. Then, the cellophane containing the plants was transferred to newBCDplates supplemented with 1mM

6-Benzylaminopurine (BAP) and grown for 2-10 days until the desired stage of bud formation was reached.

Plant model: Marchantia polymorpha

Male and female accessions of Marchantia polymorpha, Takaragaike-1 (Tak-1) and Tak2, respectively were used and maintained

asexually. Marchantia was grown on half strength Gamborg’s B5 medium containing 0.5g/l MES and 10 g/l agar (Gamborg et al.,

1968). Plants were kept under 50-60 mmol photons per m-2s-1 continuous white light at 22�C. Spores generated by crossing Tak-

1 and Tak-2 were used for transformation to generate the 35S-mCitrine-MpSOSEKI transgenic line.

Cell cultures: HEK293T and COS-7
HEK293T and COS-7 cells were cultured in DMEM (GIBCO), supplemented with 10% fetal bovine serum (FBS) and penicillin/

streptomycin at 37�C in a humidified atmosphere with 5% CO2. All cells were screened regularly for mycoplasma. Transient trans-

fections of cells were performed using polyethylenimine (PEI, Polysciences) in DMEM with 10% FBS.

METHOD DETAILS

Generation of transgenics
For transformation of Arabidopsis, floral dipping was performed as described (Clough and Bent, 1998). Agrobacterium tumefaciens

strain GV3101 harboring helper plasmid pSOUP was transformed by electroporation with plasmids containing the relevant mutant

SOK or AN versions. After two days of selection at 28�C on LB agar supplemented with 25mg/l rifampicin, 50mg/l gentamycin,

2mg/l tetracycline and 50mg/l kanamycin, colonies were picked and cultured overnight at 28�C in liquid LB plus aforementioned an-

tibiotics. The following morning, 2.5g sucrose and 25ml Silwet L-77 were added to 50ml bacterial culture. Arabidopsis flowers were

dipped into this suspension and incubated in a closed box overnight. Next day, the plants were put upright and cultured under long-

day conditions as described above.

Physcomitrella was transformed as follows: Approximately 30 mg of plasmid DNA harboring the gene targeting constructs for

Citrine-tagging of PpSOKswas linearized and transformed into a pEF1a::mCherry-tubulin P. patens line (Kosetsu et al., 2017). Trans-

formation was performed using protoplasts generated with Driselase and the PEG/heat-shock-based method described by

Nishiyama et al., (2000). Successful integration of the Citrine tag at the C terminus of the endogenous PpSOK genes through homol-

ogous recombination was confirmed by PCR using oligonucleotides listed in Table S4.

Marchantia polymorpha sporelings were transformed with Agrobacterium harboring 35S-mCitrine-MpSOSEKI according to an

established method (Ishizaki et al., 2008). The transformed sporelings were plated and grown on half-strength Gamborg’s B5 me-

dium supplemented with 10mg/ml hygromycin and 100mg/ml cefotaxime.

Generation of plasmids
Primers used in this study are described in Table S4. Mutations in Arabidopsis SOK1 and SOK5 fusion proteins were generated by

overlap extension PCR: SOK was amplified in two parts from a SOK-YFP cDNA-containing plasmid, with primers containing the

desired mutation. Both fragments were fused together and cloned into a pGIIB pRPS5a::LIC-NOSt (pPLV28) vector (De Rybel

et al., 2011) using SLICE (Zhang et al., 2012). pAN:AN-TdTOM was generated by cloning a �2kb fragment amplified from the pro-

moter and the protein coding region from Arabidopsis thaliana genomic DNA into pPLV23 (De Rybel et al., 2011) with SLICE cloning

(Zhang et al., 2012). All plasmids were verified by sequencing.

For homologous recombination in Physcomitrella, �1kb of the genomic region upstream and downstream of the predicted stop

codon was amplified by PCR and cloned into pCTRN-nptII

(Hiwatashi et al., 2008) using the restriction sites in Table S4. All constructs were verified by sequencing.

To generate 35S-mCitrine-MpSOSEKI, the genomic region spanning the entire coding sequence of the MpSOSEKI gene was

amplified using primers CA74-MpSOSEKI fw cacc and CA75-MpSOSEKI rv stop. The amplified fragment was cloned into the

pENTER/D-TOPO vector using the Gateway TOPO cloning kit (Life technologies). This entry clone was recombined into the

pMpGWB105 (Ishizaki et al., 2015) by the LR Clonase II (Life technologies) according to the manufacturer’s recommendations.

DIX sequences (Table S5) for in vitro and cell-based assays were generated by gene synthesis (gBlocks, IDT), amplified by PCR

and cloned into mammalian and bacterial expression vectors by restriction free cloning. Mutagenesis was carried out with standard

PCR-based methods, using KOD DNA polymerase (Merck Millipore) and clones were verified by sequencing.

Phylogenetic analysis
Nucleotide and protein sequences of each SOSEKI ortholog fromMarchantia polymorpha, Physcomitrella patens, Amborella tricho-

poda, Oryza sativa, Zea mays, Solanum lycopersicum and Arabidopsis thaliana were obtained from Phytozome ver11 (https://

phytozome.jgi.doe.gov/pz/portal.html). Various DIX domain-containing proteins were obtained from UniProt and GenBank data-

bases (for IDs, see Table S3). The tBLASTn module at JGI MycoCosm (https://mycocosm.jgi.doe.gov/fungi) was used to search

for DIX domain-containing proteins in fungi with plant (A. thaliana) and animal (H. sapiens) DIX domains as query sequences. Data
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access to > 1000 plant transcriptomes was provided by the OneKP consortium (http://sites.google.com/a/ualberta.ca/onekp/)

(Matasci et al., 2014). A representative set of transcriptomes (see Mutte et al., 2018) for each taxonomic clade (level: order) was

used to search for SOSEKI proteins in OneKP plant transcriptomes. To determine the presence and evolution of SOSEKI or DIX

domain-containing proteins in the SAR group, the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP)

data (Keeling et al., 2014) was used, and genes were identified as described for OneKP data. Phylogenetic analysis was performed

with the pipeline developed by Mutte et al. (2018). Briefly, all collected nucleotide sequences from various species were aligned with

MAFFT v7 (ver7.123b; https://mafft.cbrc.jp/alignment/server/), and alignment positions with > 70% gaps were removed using

Phyutility v2.2.6 (Smith and Dunn, 2008). Furthermore, a phylogenetic tree was constructed using RAxML v8.1.20 (Stamatakis,

2014) with the GTR model of evolution, identified with PartitionFinder2 (Lanfear et al., 2017). Phylogenetic trees were visualized in

iTOL and can be accessed at https://itol.embl.de/shared/dolfweijers.

Identification of domains and motifs in SOSEKI proteins
Protein sequences of the transcripts used in phylogenetic tree construction were used for domain finding using the MEMEmotif dis-

covery program with additional parameters ‘‘-mod zoops -nmotifs 15 -minw 10’’ (ver 4.12.0) (Bailey et al., 2009). Among 15 elements

identified, 4 spanned the N-terminal most 100 residues, and were identified as DIX domains. Motifs that were specific to a certain

clade or motifs that did not show conservation of significant amino acids were discarded.

SuperTOP assays
For luciferase reporter assays, Dishevelled null mutant HEK293T cells (Gammons et al., 2016b) were transfected with SuperTOP

(Veeman et al., 2003) and CMV-Renilla control plasmids with PEI. 22 hours post-transfection, cells were lysed for 20 minutes in

Über buffer (20 mM Tris pH 7.4, 10% v/v glycerol, 200 mM NaCl, 1 mM EDTA, 5 mM NaF, 2 mM Na3OV4, 0.2% Triton X-100 and

Protease Inhibitor cocktail tablets (Roche)). Lysates were cleared by centrifugation and analyzed with the DualGlo Luciferase Re-

porter Assay kit (Promega) according to themanufacturer’s protocol using 10 ml lysate with 50 ml reagents in an opaque 96-well plate.

Measurements were made with an Orion Microplate Luminometer (Berthold). Values were normalized to Renilla luciferase, and are

shown as mean ± SEM relative to the signaling-incompetent DVL2-M2M4 mutant (set to 1 in Figures 5A and 7D). Experiments were

repeated 6 times.

An aliquot of each reaction was resolved by SDS-PAGE and analyzed by western blotting using primary antibodies against GFP

and b-tubulin, followed by HRP-conjugated secondary antibodies against rabbit or mouse, respectively. Proteins were detected with

ECL Western Blotting Detection Reagent (Amersham) and developed on film.

Protein expression and purification
6xHisLip- or 6xHisBRIL-tagged recombinant proteins were purified from BL21(DE3) pRARE2 E. coli bacterial strains. Bacteria were

grown in LB media supplemented with appropriate antibiotic to OD600 0.6, then dropped to a lower temperature (16 to 24�C) and
induced at OD600 0.8 by addition of 0.4 mM isopropyl b-D-1-thiogalactopyranoside (IPTG). Proteins were expressed for 3 hours

or over night. Cell pellets were resuspended in lysis buffer (25 mM Tris-HCl pH 8, 200 mM NaCl, 20 mM imidazole, 10 mg/ml DNase,

protease inhibitor cocktail) and lysed by high-pressure homogenization with an Emulsiflex C-3 (Avestin). Lysates were cleared by

ultracentrifugation (140,000x g, 30 minutes, 4�C) and mixed with Ni-NTA agarose. Beads were washed multiple times with lysis

buffer, and 6xHistagged protein was eluted with lysis buffer supplemented with 500 mM imidazole. Each protein was purified by

size exclusion chromatography, and protein purity was assessed by SDS-PAGE.

Selenomethionine labeled samples were expressed in M9 minimal medium supplemented with 0.4% glucose, antibiotics, trace

elements and 30mL overnight culture per liter expression culture. Cultures were grown at 37�C toOD600 0.6, at which point individual

amino acids (0.4 g/l lysine, threonine, phenylalanine and 0.2 g/l leucine, isoleucine, valine and selenomethionine) were added. Cells

were induced at OD600 0.8 with IPTG and processed essentially as described above.

Protein crystallization and data collection
6xHisLip-TEV-SOK4 bearing D85A (which blocks polymerization) was cleaved by TEV protease (protein:TEV ratio 80:1) overnight at

4�C. The tag was removed by binding SOK4 protein to a HiTrapSP column (GE Healthcare) with a linear NaCl gradient (0-1 MNaCl) in

25 mMBIS-TRIS pH 6.5, 0.06% NaN3. Eluted fractions were separated on a HiLoad 26/600 Superdex 75 pg column (GE Healthcare)

in 25 mM BIS-TRIS pH 6.5, 150 mM NaCl. Pure fractions of SOK4 D85A were concentrated with a 3 kD MWCO Vivaspin 20 concen-

trator (Sartorius) to 9 mg/mL. Prior to crystallization, 1 mM TCEP was added and samples were cleared by centrifugation for 15 mi-

nutes at 100,000 rcf. Crystallization trials with multiple commercial crystallization kits were performed in 96well sitting-drop vapor

diffusion plates (Molecular Dimensions) at 18�C and set up with a mosquito HTS robot (TTP Labtech). Drop ratios of 0.2 ml +

0.2 ml (protein solution + reservoir solution) were used for coarse and fine screening. Hits were obtained under multiple conditions

and optimized subsequently.

Data were collected from crystals grown in 0.69 M ammonium sulfate, 200 mM NaCl, 100 mM HEPES pH 7.0. Crystal-containing

drops were mixed with 25% glycerol in reservoir solution prior to picking and flash freezing in liquid nitrogen. Diffraction data were

collected at the Diamond Light Source (DLS) on beamline I03. Datasets were autoprocessed with XIA2 DIALS, scaled using Aimless
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(Evans and Murshudov, 2013) and Refmac5 in the CCP4 suite of programs. Structure refinement and manual model building were

performed with Refmac5 and COOT (Emsley et al., 2010). Color figures were prepared with PyMol (Schrödinger).

Size exclusion chromatography – multi-angle light scattering
Purified recombinant proteins were quantified by NanoDrop using the protein-specific extinction coefficient and diluted to the

desired concentration (2 mg/mL unless stated otherwise). SEC-MALS was performed in PBS with 1 mM DTT on a Superdex200

10/300 GL column (GE Healthcare) using an Agilent 1200 Series chromatography system coupled to a DAWN Heleos II multi-angle

light scattering detector as well as an Optilab rEX refractive index detector (Wyatt Technology). 100 ml sample was used per run at a

flow rate of 0.5 mL/min. BSA was used for calibration. Baseline correction, selection of peaks and calculation of molecular masses

was performed with the Astra 6.1 software package.

Immunoprecipitation and mass spectrometry
In each experiment, approximately 5ml ofArabidopsis seedswas used for the SOK line and for Col-0 as control. Seedswere sterilized

as described above and plated on 1/2MS plates covered with nylon mesh. Plates were grown vertically for 5-6 days, in conditions as

described above. For affinity purifications with pSOK1::SOK1-YFP, 3 g seedlings were used for each replicate. For pRPS5A::SOK1-

YFP, 1.5 g seedling roots was used per replicate, for pRPS5a::SOK2-YFP 1.8g, and for pRPS5a::SOK3-YFP 1.5g. Each experiment

contained 3 technical replicates of wt Col-0 as control and 3 replicates of SOK-YFP. IP-MSwas performed as described in Wendrich

et al. (2017).

Briefly, samples were snap frozen in liquid nitrogen, ground thoroughly in an ice cold mortar, and 9mL EB (0.05M Tris-HCl pH7.5,

0.15M NaCl, 1%NP40, 1 Protease inhibitor tablet (Roche) per 50 ml solution) was added. Samples were sonicated on ice for 3 times

15 s, with at least 15 s pause in between. Proteins were extracted on ice for 30 minutes and subsequently diluted 5x with EB lacking

NP40. Diluted samples were centrifuged twice for 15 minutes at 4�C, 18,000 rpm. The supernatant was filtered through a 40mm cell

strainer and mMACS Anti-GFP MicroBeads (Miltenyi Biotec) were added. For pSOK1::SOK1-YFP, 100ml of MicroBeads were added,

for the pRPS5a::SOK-YFP pull-downs 75 ml was used. The samples were rotated for 2 hours at 4�C to bind protein complexes.

mMACS colums (Miltenyi Biotec) were fitted into a mMACS Separator (Miltenyi Biotec) and equilibrated with EB with 0.1% NP40.

The protein extracts were run over the columns at 4�C. Next, the columns were washed 4 times with 200 ml EB with 0.1% NP40

and twice with 500 ml 50mM NH4HCO3 pH8. To elute the samples, 50 mL 50mM NH4HCO3 pH8, pre-heated at 95�C was applied

directly after removing the columns from the magnet.

The eluates were next treated with 10 mM dithiotreitol (DTT) for 2 hours at 60�C, then with 15 mM iodocetamide in for 2 hours at

room temperature in the dark. Finally, samples were treated with 4 mM L-cysteine. Samples were incubated overnight at 20�C with

1 ml trypsin sequencing grade (0.5 mg/ml in 1 mM HCl). The next morning, the pH of the samples was set to 3 with trifluoroacetic acid.

Samples were cleaned up using homemade columns: 200 ml pipet tips were stuffed with a piece of C18 Empore disk (Thermo) and

filled with 200 ml methanol. 4 ml of 50% LiChroprep RP18 (Merck) slurry in methanol was added to the tip. Elution of the columns was

performedwith a syringe or vacuummanifold until the final elution of the sample, but columnswere not allowed to run dry. The column

was washed again with methanol. Columns were equilibrated with 100 ml 1 ml/l HCOOH in MiliQ. The samples were centrifuged at

maximum speed for 10minutes to remove beads, and the supernatant was applied to the columns and run through. The columnswith

bound sample were washed with 100 ml 1 ml/l HCOOH in MiliQ. Finally, samples were manually eluted by applying 50 ml 50% Aceto-

nitrile + 50% 1ml/l HCOOH to the column and applying pressure with a syringe. The cleaned up samples were collected in low-bind-

ing Eppendorf tubes and samples were dried in a SpeedVac at 45�C for at least 2 hours. 50 ml of 1ml/l HCOOH was added to each

sample, after which samples were sonicated for 5x 10 seconds in a water bath sonicator with brief vortexing after each sonicat-

ion step.

Samples were applied to online nanoLC-MS/MS using a 60 min acetonitrile gradient from 8%–50%. Spectra were recorded on a

LTQ-XL mass spectrometer (Thermo Scientific).

Microscopy of plant specimens
Confocal images of Arabidopsis and Physcomitrella were taken on a Leica SP5 or SP8 confocal microscope equipped with an

Argon laser and DSS561 diode laser (SP5) or white light laser (SP8). YFP was excited at 514 nm, and propidium iodide, mCherry

and tdTomato at 561 nm. Arabidopsis roots were counterstained with 1 mg/ml propidium iodide (Sigma) for 1-5 minutes. For imaging

of Arabidopsis, filters were set at �520-550nm for YFP, and 600-650nm for tdTomato and propidium iodide. For embryo imaging,

ovules were isolated and gently pressed to liberate embryos in PBS buffer. Imaging was performed as described above.

For imaging of Physcomitrella, emission light was detected at �525-550 nm for mCitrine and at �600-650 nm for mCherry. Both

naturally occurring Physcomitrella gametophore buds and buds induced by 1mM BAP were examined.

Observation of Marchantia 35S-mCitrine-MpSOSEKI transgenic lines was performed on gemmae. Citrine was excited with a

514nm wavelength laser and fluorescence was detected at 525-580nm using a Leica SP8 confocal microscope.

The plasmolysis experiment in Arabidopsis was performed by dipping roots in a solution of mannitol at a final concentration of

0.4M. Confocal imaging was performed on a Leica SP8 confocal microscope with a hybrid detector in photon counting mode.

The following laser settings were used for root observation: YFP (excitation 514nm and emission 525-550nm), tdTomato (excitation

561nm, emission 570-700nm).
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Quantification of cell division defects in Arabidopsis

Selected primary transgenics were transferred to MS plates without herbicide for 3-4 days before imaging. Roots were stained with

propidium iodide (Sigma-Aldrich) at a final concentration of 10mg/ml and imaged using a Leica SP8 confocal microscope. Roots were

imaged to detect the propidium iodide staining (excitation 561nm, emission 600-700nm) as well as SOK1-YFP expression (excitation

514nm and emission 525-550nm).

Immunofluorescence of mammalian cells
COS-7 cells were cultured in 6-well culture dishes and transfected with 0.5mg DNA and 3.5x PEI, grown for 22 hours and fixed on

coverslips with 4% formaldehyde in PBS and subsequently permeabilized by 0.5% Triton X-100 in PBS. Cells were blocked in

3% bovine serum albumin in PBS-T for at least 10 minutes, and subsequently incubated with primary antibodies for > 1 hour. Cells

were washed in blocking buffer and PBS-T and incubated with secondary antibodies labeled with fluorophores. Coverslips were

washed and embedded with VectaShield with DAPI mounting media. Images were acquired with identical settings using a Zeiss

710 Confocal Microscope using ‘best signal’ setting (Smart Setup, ZEN software, Zeiss)

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of cell division defects
Roots were scanned for cells with division plane defects in the cell layers expressing the SOSEKI protein. Quantification of cell di-

vision defects in Arabidopsis was performed by counting the number of T1 generation roots showing aberrant cell division and

the total number of roots examined. Root cells from the meristematic region divide orthogonally to the surface of the root. In our

growth conditions, we rarely observe a deviation of the plane of division of more than 15� from the primary axis of root growth. Hence,

any deviation exceeding 15� was considered an aberrant cell division. The angles were measured using ImageJ. A percentage of

defective versus total number of roots was calculated.

Analysis of mass-spectrometry data
Data analysis of obtained spectra was done in MaxQuant software package v1.6.8.0 (Tyanova et al., 2016a) as described (Wendrich

et al., 2017). Data analysis and visualization was performed in Perseus v1.6.2.3. (Tyanova et al., 2016b), Adobe Illustrator and R.

Cell culture experiments
All error bars are represented as mean ± SEM for 6 independent experiments. Statistical significance was calculated in Prism V8.0

(GraphPad) by ANOVA test and denoted as * = p < 0.0001 between indicated data points.

DATA AND CODE AVAILABILITY

Coordinates for AtSOK4 DIX were deposited with the PDB under 6RSN. Phylogenetic trees were deposited at iTOL (https://itol.embl.

de/shared/dolfweijers).
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Supplemental Figures
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Figure S1. Phylogeny and Localization of PpSOK Proteins, Related to Figure 1

(A) Maximum Likelihood phylogenetic tree of SOSEKI sequences in Physcomitrella patens. Proteins are indicated as unique gene identifiers using nomenclature

from version 3.3 of the Physcomitrella genome assembly, as well as a PpSOK number. Nodes are marked with bootstrap support values across 1000 replicates.

(B–E) Representative confocal images as in main Figures 1C–1G, revealing subcellular localizations of PpSOK1-Citrine (B and C) and PpSOK3-Citrine (D and E) in

protonema (B and D) and gametophore buds (C and E), as indicated in panels. Scale bars, 25 mm in (B–E).
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Figure S2. Conserved SOSEKI Elements and Localizations of Mutant SOK1-YFP, Related to Figures 2 and 3

(A) Amino acid logos of conserved elements in plant SOSEKI proteins.

(B and C) Representative confocal images as in main Figures 2B–2G, revealing subcellular localizations of C233A (B) and H29D/D78R (C) mutant SOK1-YFP, as

indicated in panels. Magenta: Propidium Iodide counterstain. Scale bars in (B and C), 10 mm.



Figure S3. DIX Domain Conservation across Kingdoms, Related to Figure 4

Sequence alignments of the DIX proteins used in this study, with b strands (arrows) and a helices (spirals) indicated. Head and tail surfaces aremarked by blue and

cyan, respectively. The D and H residues that were mutated in SOK1 and SOK4 are marked by red asterisk.
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Figure S4. Identification of AtSOK-Interacting Proteins, Related to Figure 6

(A–C) Identification of proteins co-purifying with AtSOK1-YFP (A), RPS5A-AtSOK2-YFP (B), and RPS5A-AtSOK3-YFP (C), as in main Figure 6A; only one

significant protein was identified in (A), using a threshold of > 1.301 (FDR) and > 0.3 FC. Note that AN is identified in SOK2 and SOK3 complexes, and SOK3 is

co-purified with SOK2.

(D–F) Complementation of the an-1 mutant by AN-tdTomato; (D and E) two-branched trichomes in (D) an-1 or (E) non-transgenic siblings segregating in a

heterozygous AN-tdTomato line; (F) three-branched trichomes in a transgenic AN-tdTomato leaf. Lower panels in (D–F) show close-up of a single trichome.

(G and H) Localization of RPS5A-SOK1-YFP in wild-type (G) and an-1 (H) root tip.

(I) Representative confocal image of root tip co-expressing SOK1-YFP (green) and AN-tdTomato; (I’) lack of YFP bleed-through signal in tdTomato channel; (I’’),

YFP fluorescence. Scale bars, 100 mm in (D–F), 5 mm in (G and H) and 10 mm in (I).
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Figure S5. Biochemical Characterization of SAR Group DIX Domains, Related to Figure 7
(A–D) SEC-MALS of purified wild-type (A) and variousmutant (B and C) DIX domains fromBlastocystis hominis (BhDIX) or wild-type andmutant DIX domains from

(D) Cryptosporidium parvum (CpDIX) (D); curves and line traces as in main Figure 3A.
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