120 research outputs found

    Machine learning methods detect arm movement impairments in a patient with parieto-occipital lesion using only early kinematic information

    Get PDF
    Patients with lesions of the parieto-occipital cortex typically misreach visual targets that they correctly perceive (optic ataxia). Although optic ataxia was described more than 30 years ago, distinguishing this condition from physiological behavior using kinematic data is still far from being an achievement. Here, combining kinematic analysis with machine learning methods, we compared the reaching performance of a patient with bilateral occipitoparietal damage with that of 10 healthy controls. They performed visually guided reaches toward targets located at different depths and directions. Using the horizontal, sagittal, and vertical deviation of the trajectories, we extracted classification accuracy in discriminating the reaching performance of patient from that of controls. Specifically, accurate predictions of the patient's deviations were detected after the 20% of the movement execution in all the spatial positions tested. This classification based on initial trajectory decoding was possible for both directional and depth components of the movement, suggesting the possibility of applying this method to characterize pathological motor behavior in wider frameworks

    Alexithymia is related to the need for more emotional intensity to identify static fearful facial expressions

    Get PDF
    Individuals with high levels of alexithymia, a personality trait marked by difficulties in identifying and describing feelings and an externally oriented style of thinking, appear to require more time to accurately recognize intense emotional facial expressions (EFEs). However, in everyday life, EFEs are displayed at different levels of intensity and individuals with high alexithymia may also need more emotional intensity to identify EFEs. Nevertheless, the impact of alexithymia on the identification of EFEs, which vary in emotional intensity, has largely been neglected. To address this, two experiments were conducted in which participants with low (LA) and high (HA) levels of alexithymia were assessed in their ability to identify static (Experiment 1) and dynamic (Experiment 2) morphed faces ranging from neutral to intense EFEs. Results showed that HA needed more emotional intensity than LA to identify static fearful - but not happy or disgusted - faces. On the contrary, no evidence was found that alexithymia affected the identification of dynamic EFEs. These results extend current literature suggesting that alexithymia is related to the need for more perceptual information to identify static fearful EFEs

    Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients

    Get PDF
    The processing of emotional stimuli in the absence of awareness has been widely investigated in patients with lesions to the primary visual pathway since the classical studies on affective blindsight. In addition, recent evidence has shown that in hemianopic patients without blindsight only unseen fearful faces can be implicitly processed, inducing enhanced visual encoding (Cecere et al., 2014) and response facilitation (Bertini et al., 2013, 2017) to stimuli presented in their intact field. This fear-specific facilitation has been suggested to be mediated by activity in the spared visual subcortical pathway, comprising the superior colliculus (SC), the pulvinar and the amygdala. This suggests that the pulvinar might represent a critical relay structure, conveying threat-related visual information through the subcortical visual circuit. To test this hypothesis, hemianopic patients, with or without pulvinar lesions, performed a go/no-go task in which they had to discriminate simple visual stimuli, consisting in Gabor patches, displayed in their intact visual field, during the simultaneous presentation of faces with fearful, happy, and neutral expressions in their blind visual field. In line with previous evidence, hemianopic patients without pulvinar lesions showed response facilitation to stimuli displayed in the intact field, only while concurrent fearful faces were shown in their blind field. In contrast, no facilitatory effect was found in hemianopic patients with lesions of the pulvinar. These findings reveal that pulvinar lesions disrupt the implicit visual processing of fearful stimuli in hemianopic patients, therefore suggesting a pivotal role of this structure in relaying fear-related visual information from the SC to the amygdala

    The Enfacement Illusion Is Not Affected by Negative Facial Expressions

    Get PDF
    Enfacement is an illusion wherein synchronous visual and tactile inputs update the mental representation of one’s own face to assimilate another person’s face. Emotional facial expressions, serving as communicative signals, may influence enfacement by increasing the observer’s motivation to understand the mental state of the expresser. Fearful expressions, in particular, might increase enfacement because they are valuable for adaptive behavior and more strongly represented in somatosensory cortex than other emotions. In the present study, a face was seen being touched at the same time as the participant’s own face. This face was either neutral, fearful, or angry. Anger was chosen as an emotional control condition for fear because it is similarly negative but induces less somatosensory resonance, and requires additional knowledge (i.e., contextual information and social contingencies) to effectively guide behavior. We hypothesized that seeing a fearful face (but not an angry one) would increase enfacement because of greater somatosensory resonance. Surprisingly, neither fearful nor angry expressions modulated the degree of enfacement relative to neutral expressions. Synchronous interpersonal visuo-tactile stimulation led to assimilation of the other’s face, but this assimilation was not modulated by facial expression processing. This finding suggests that dynamic, multisensory processes of self-face identification operate independently of facial expression processing

    Alterations in resting-state functional connectivity after brain posterior lesions reflect the functionality of the visual system in hemianopic patients

    Get PDF
    Emerging evidence suggests a role of the posterior cortices in regulating alpha oscillatory activity and organizing low-level processing in non-alpha frequency bands. Therefore, posterior brain lesions, which damage the neural circuits of the visual system, might affect functional connectivity patterns of brain rhythms. To test this hypothesis, eyes-closed resting state EEG signal was acquired from patients with hemianopia with left and right posterior lesions, patients without hemianopia with more anterior lesions and healthy controls. Left-lesioned hemianopics showed reduced intrahemispheric connectivity in the range of upper alpha only in the lesioned hemisphere, whereas right-lesioned hemianopics exhibited reduced intrahemispheric alpha connectivity in both hemispheres. In terms of network topology, these impairments were characterized by reduced local functional segregation, with no associated change in global functional integration. This suggests a crucial role of posterior cortices in promoting functional connectivity in the range of alpha. Right-lesioned hemianopics revealed also additional impairments in the theta range, with increased connectivity in this frequency band, characterized by both increased local segregated activity and decreased global integration. This indicates that lesions to right posterior cortices lead to stronger impairments in alpha connectivity and induce additional alterations in local and global low-level processing, suggesting a specialization of the right hemisphere in generating alpha oscillations and in coordinating complex interplays with lower frequency bands. Importantly, hemianopic patient’s visual performance in the blind field was linked to alpha functional connectivity, corroborating the notion that alpha oscillatory patterns represent a biomarker of the integrity and the functioning of the underlying visual system.Fil: Gallina, Jessica. Universidad de Bologna; ItaliaFil: Zanon, Marco. Universidad de Bologna; ItaliaFil: Mikulan, Ezequiel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Università degli Studi di Milano; ItaliaFil: Pietrelli, Mattia. Universidad de Bologna; ItaliaFil: Gambino, Silvia. Universidad de Bologna; ItaliaFil: Ibáñez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; ChileFil: Bertini, Caterina. Universidad de Bologna; Itali

    Composition of health-promoting phenolic compounds in two extra-virgin olive oils and diversity of associated yeasts

    Get PDF
    Extra virgin olive oil (EVOO), a basic component of the Mediterranean diet, is an important functional food, for its content in health-promoting compounds, showing antioxidant, antiinflammatory and antiproliferative activities. Here, two Tuscan EVOOs were analyzed for the occurrence and concentrations of health-promoting phenols, such as tyrosol and hydroxytyrosol and the secoiridoid derivatives, oleocanthal and oleacein. Independently of the milling period, the two EVOOs showed different contents of oleocanthal and oleacein. During storage, the contents of oleocanthal and oleacein decreased, while those of simple phenols increased. In all oil samples oleacein displayed a higher rate of reduction than oleocanthal. Multivariate analyses of the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles, revealed the occurrence and diversity of oil-borne yeast communities, which differed in the two EVOOs. Sequences of excised DGGE bands identified Candida adriatica, Eremothecium coryli and Lachancea fermentati as the main components of the oil-borne yeast community. Our work detected, for the first time, differences in the content of tyrosol, hydroxytyrosol, oleocanthal and oleacein between the two Tuscan EVOOs analyzed, consistent with the differences found in yeast community composition. Further studies could confirm whether oil-borne yeasts may affect the composition of health-promoting oil phenolic compounds

    Mild Neurological Phenotype Associated with Hypomorphic Variants in the Ataxia-Telangiectasia Mutated Gene

    Get PDF
    Background: Ataxia-telangiectasia (A-T) is a progressive multisystemic neurodegenerative disease. The phenotypic spectrum includes conditions (variant A-T) with mild, late-onset, and atypical clinical presentations characterized by the prevalence of dyskinetic rather than ataxic features. Cases: We describe the clinical presentations of 3 siblings with early-onset truncal ataxia without obvious neurological deterioration or biological markers of classic A-T phenotype. We performed functional and genetic evaluation of 3 siblings with very mild neurological phenotype. Genetic evaluation with a next-generation sequencing panel for genes causative of cerebellar ataxia detected 2 known ATM gene variants, missense c.9023G>A p.(Arg3008His), and leaky splicing c.1066-6T>G variants. Functional studies showed mildly reduced ATM expression and residual kinase activity in the probands compared with healthy controls. Conclusions: These results suggest the importance of investigating ATM variants even in the presence of clinical and biological atypical cases to ensure specific therapeutic regimens and oncological surveillance in these patients

    Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation

    Get PDF
    Abstract The visual and auditory systems often concur to create a unified perceptual experience and to determine the localization of objects in the external world. Co-occurring auditory and visual stimuli in spatial coincidence are known to enhance performance of auditory localization due to the integration of stimuli from different sensory channels (i.e. multisensory integration). However, auditory localization of audiovisual stimuli presented at spatial disparity might also induce a mislocalization of the sound towards the visual stimulus (i.e. ventriloquism effect). Using repetitive transcranial magnetic stimulation we tested the role of right temporoparietal (rTPC), right occipital (rOC) and right posterior parietal (rPPC) cortex in an auditory localization task in which indices of ventriloquism and multisensory integration were computed. We found that suppression of rTPC excitability by means of continuous theta-burst stimulation (cTBS) reduced multisensory integration. No similar effect was found for cTBS over rOC. Moreover, inhibition of rOC, but not of rTPC, suppressed the visual bias in the contralateral hemifield. In contrast, cTBS over rPPC did not produce any modulation of ventriloquism or integrative effects. The double dissociation found in the present study suggests that ventriloquism and audiovisual multisensory integration are functionally independent phenomena and may be underpinned by partially different neural circuits

    Primo quaderno dei dottorandi

    Get PDF
    Il testo riunisce sei articoli, estratti dai singoli percorsi di ricerca di Dottoranto degli autori. Sono espressione dei diversi campi di interesse che nel Dipartimento e nel Collegio del Dottorato convivono

    Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis

    Get PDF
    Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, \u3b3-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients
    • …
    corecore