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Highlights:  

1) Tyrosol, hydroxytyrosol, oleocanthal and oleacein were determined in two Tuscan EVOOs 

2) The two EVOOs showed different contents of oleocanthal and oleacein 

3) During storage the contents of the phenols tyrosol and hydroxytyrosol increased 

4) Oils differing in phenols levels showed different yeast community composition 

5) Cluster analysis revealed important changes in yeast diversity during storage 

 

 

Abstract  

Extra virgin olive oil (EVOO), a basic component of the Mediterranean diet, is an important 

functional food, for its content in health-promoting compounds, showing antioxidant, anti-

inflammatory and antiproliferative activities. Here, two Tuscan EVOOs were analyzed for the 

occurrence and concentrations of health-promoting phenols, such as tyrosol and hydroxytyrosol and 

the secoiridoid derivatives, oleocanthal and oleacein. Independently of the milling period, the two 

EVOOs showed different contents of oleocanthal and oleacein. During storage, the contents of 

oleocanthal and oleacein decreased, while those of simple phenols increased. In all oil samples 

oleacein displayed a higher rate of reduction than oleocanthal. Multivariate analyses of the 

polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles, revealed 

the occurrence and diversity of oil-borne yeast communities, which differed in the two EVOOs. 

Sequences of excised DGGE bands identified Candida adriatica, Eremothecium coryli and 

Lachancea fermentati as the main components of the oil-borne yeast community. Our work 

detected, for the first time, differences in the content of tyrosol, hydroxytyrosol, oleocanthal and 

oleacein between the two Tuscan EVOOs analyzed, consistent with the differences found in yeast 

community composition. Further studies could confirm whether oil-borne yeasts may affect the 

composition of health-promoting oil phenolic compounds. 
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1. Introduction 

 

Olive oil represents the most important vegetable oil used for human nutrition in the Mediterranean 

area and is gaining popularity worldwide as a basic component of the Mediterranean diet, due to its 

well-known nutritional and nutraceutical value (Cicerale et al., 2012). Its specific health-promoting 

properties have been officially recognized by the European Food Safety Authority (EFSA), with a 

health claim that attributed the protection of blood lipids from oxidative stress to extra virgin olive 

oil (EVOO) phenols, in particular hydroxytyrosol and its derivatives (EFSA, 2011). The family of 

phenolic compounds characteristic of EVOO comprises simple phenols, tyrosol and 

hydroxytyrosol, and secoiridoid derivatives, oleocanthal and oleacein (Fig. 1) (Karkoula et al., 

2014; Antonini et al., 2015).  

Phenols have several biological activities, such as the depletion of oxidized low-density 

lipoproteins (Visioli et al., 1995), antioxidant activity (Visioli et al., 2002) and protection against 

neurodegenerative diseases associated with aging (Casamenti & Stefani, 2017). In particular, 

oleocanthal, responsible for the pungent and irritating sensation associated with the ingestion of 

EVOO (Barbieri et al., 2015), displayed an anti-inflammatory activity linked to the inhibition of 

two subtypes of cyclooxygenases (COX 1 and COX 2) comparable to that of the well-known anti-

inflammatory drug ibuprofen (Beauchamp et al., 2005). Furthermore, oleocanthal reduced 

lipopolysaccharide induced nitric oxide synthase expression and nitric oxide production in the 

ATDC-5 murine chondrogenic and in murine macrophages J774 cell lines in a dose-dependent 

manner, showing a potential activity for the treatment of inflammatory degenerative joint diseases 

(Iacono et al., 2010; Scotece et al., 2012). In addition, oleocanthal was active against peptic ulcer-
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related microorganisms (Romero et al., 2007) and some types of cancer (Fabiani, 2016; Fogli et al., 

2016; Cusimano et al., 2017). Oleacein, exhibited anti-inflammatory properties due to its 5-

lipoxygenase inhibitory effect (Vougogiannopoulou et al., 2014), and showed angiotensin 

converting enzyme (ACE) inhibitory activity (Czerwińska et al., 2012).  

The occurrence and concentrations of such beneficial phenolic compounds in olive oil depends 

on diverse factors, such as olive cultivar, fruit ripening state and harvest season, pedoclimatic 

conditions, irrigation and agronomic techniques, oil processing, preservation and storage conditions 

(Servili et al., 2004; 2007; Caruso et al., 2014).  

Furthermore, recent findings revealed that the concentrations of these compounds in olive oil 

may be affected by the presence and transformation activity of oil-borne microbiota originating 

from olives’ carposphere and migrating into olive oil during processing in the mill (Ciafardini et al., 

2004; Koidis et al., 2008).  

Here, for the first time, a culture-independent method, PCR-denaturating gradient gel 

electrophoresis (PCR-DGGE), was used to investigate the occurrence and diversity of yeast 

communities in two Tuscan EVOOs. The quantitative composition of health-promoting phenols, 

such as the simple compounds tyrosol and hydroxytyrosol and the secoiridoid derivatives, 

oleocanthal and oleacein, was also assessed.  

 

2. Material and methods 

 

2.1. Oil sampling 

The two EVOOs analyzed (hereafter A and B), originating from Tuscany, were cold extracted from 

washed and defoliated olives which were mechanically crushed, the paste kneaded, the oil extracted 

by centrifugation and separated from water and pomace. The oil, without any further refining 

process, was collected directly from the producers in October 2015 (first olive milling) and in 

December 2015 (second olive milling) and stored in 5-L metal cans at ambient temperature in the 
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Laboratory of Microbiology, DiSAAA-a, until analysed. Chemical analyses were carried out on 

three replicate samples taken after remixing the whole oil mass, at 7 time points, from October 2015 

to April 2016 (first olive milling) and from December 2015 to June 2016 (second olive milling). 

Molecular analyses of oil microbial communities were performed on two replicate samples, along 

three-time points during oil storage, at time 0 and after 4 and 7 months of storage. Chemical 

analyses were carried out immediately after sample collection, while molecular analyses were 

performed at the end of the study, on 15-mL samples collected simultaneously and preserved at ‒20 

°C. 

 

2.2. Analytical reagents 

 

Solvents used for the purification procedure, high-performance liquid chromatography (HPLC) and 

nuclear magnetic resonance (NMR) analyses were purchased from Sigma-Aldrich (Sigma Aldrich 

srl, Milan, Italy): acetonitrile (99.8% purity, certified ACS reagent grade), hexane (≥ 97% purity, 

certified ACS reagent grade), methanol (99.8% purity, certified ACS reagent grade), water ( HPLC 

Plus, EMD Millipore), ethyl acetate (99.8% purity, certified ACS reagent grade), chloroform (≥ 

99.8% purity, certified ACS reagent grade), acetic acid (≥ 99.8% purity, certified ACS reagent 

grade). Solvent evaporation was carried out under vacuum using a rotating evaporator Strike 300 

(Steroglass srl, Perugia, Italy). Silica gel flash chromatography was performed using silica gel 60Å 

(0.040–0.063 mm; Sigma Aldrich srl, Milan, Italy). Thin layer chromatography (TLC) analysis was 

carried out on Merck aluminum silica gel (60 F254; Sigma Aldrich srl, Milan Italy), visualized 

under a Spectroline CM-10 UV lamp (λ = 254 nm) (Spectroline, Westbury, NY) or by spraying 

with a 10% solution of phosphomolybdic acid in absolute ethanol (Sigma Aldrich srl, Milan, Italy). 

Preparative TLC (Prep TLC) purification was performed using either 2 mm (20  10) and 1 mm (10 

 10) glass-backed sheets precoated with silica gel 60 F254 purchased from Sigma Aldrich. Tyrosol 

(≥ 99.5% purity, certified ACS reagent grade), hydroxytyrosol (≥ 98.0% purity, certified ACS 
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reagent grade) as analytical standards and p-hydroxyphenylacetic acid (≥ 98.0% purity, certified 

ACS reagent grade) as internal standard were purchased from Sigma-Aldrich. 

 

2.3. Standard preparation 

Oleocanthal and oleacein were obtained, as pure standards, by direct extraction and purification 

from virgin olive oil, using a slightly modified method developed in our previous study (Fogli et al., 

2016) for the extraction and purification of oleocanthal from olive oil. Briefly, a mixture of about 

212 g of virgin olive oil with n-hexane (848 mL) and acetonitrile (1325 mL) was homogenized 

using a vortex mixer. After centrifugation at 1800 g for 5 min, at 25 °C, the acetonitrile phase was 

collected and evaporated under reduced pressure, to afford a crude residue, which was purified by 

column chromatography using the mobile phase shown in Table 1. 

Fractions 75‒97 (89.3 mg) and fractions 104‒148 (45.2 mg) containing oleocanthal and 

oleacein, respectively, were subjected to further purification, by preparative TLC using n-

hexane/AcOEt 6:4 as mobile phase. The corresponding zones were extracted from the stationary 

phase using AcOEt under sonication for 15 min, then the suspension was filtered, and the solvent 

evaporated under reduced pressure, giving oleocanthal (15.0 mg) and oleacein (9.0 mg). 

Identification and purity of the extracted compound were based on 1H NMR, and HPLC analyses. 

The 1H NMR spectra were recorded in CDCl3 on a Bruker AVANCE IIITM 400 spectrometer 

operating at 400 MHz (Bruker Corporation, Billerica, MA).  

HPLC analysis was performed using a HPLC instrument (Beckman, Ramsey, MN) equipped 

with a System Gold Solvent Delivery module (Pumps) 125, System Gold UV/Vis Detector 166, set 

to 278 nm. Analyses, in accordance with the method previously reported (Margari & Tsabolatidou, 

2015), were performed on a Phenomenex Gemini reverse-phase C18 column (250  4.6 mm, 5 µm 

particle size; Phenomenex, Castel Maggiore, Italy). The mobile phase was  a mixture of H2O/AcOH 

(97.5:2.5 v/v) (A) and MeOH/ACN (1:1 v/v) (B). The elution gradient started from 5% eluent B and 
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reached 100% B after 65 min at flow rate 1 mL min‒1. The injected volume was 30.0 µL. The 

analyses revealed that oleocanthal and oleacein had purity >95%. 

 

2.4. Olive oil extraction and quantification of the phenolic compounds 

A mixture of about 3.0 g of EVOO with n-hexane (12.0 mL) and acetonitrile (15.0 mL) was 

homogenized using a vortex mixer. After centrifugation at 1800 g for 5 min, at 25 °C, the 

acetonitrile phase was collected and evaporated under reduced pressure, to afford a residue. A 

mixture of methanol/water (1:1 v/v) was added to residue for the HPLC injection. Phenolic 

compounds were identified by comparing retention times and UV absorbance spectra with those of 

authentic standards, and quantified at 279 nm using p-hydroxyphenylacetic acid as the internal 

standard, according to the method previously reported (Margari & Tsabolatidou, 2015). For each 

standard compound, the calibration curve was built and the detection limits (LOD) and 

quantification (LOQ) were estimated (Table 2). Sample concentrations were determined by linear 

regression. Determination coefficients (r2) for each of the calibration curves were >0.999 (Table 2). 

 

2.5 Statistical analysis 

Statistical significance of differences between phenolic compounds levels was determined by one-

way ANOVA with GraphPad Prism 5 software (GraphPad Software Inc., San Diego, CA). Tukey’s 

post-test was used for multiple comparisons. P-values < 0.3 were considered to be significant. Data 

are expressed as means ± SEM of three independent experiments, each performed in duplicate. 

 

2.6. DNA extraction from oil samples and PCR amplification 

DNA was extracted from 3 mL oil samples by using “Power Soil DNA Isolation kit” (MO BIO 

Laboratories, Inc., Cabru S.A.S. Arcore, Italy) according to the manufacturer’s protocol and stored 

at ‒20 °C until further analyses. For the analysis of yeast populations, an approximately 250 bp long 
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fragment of D1/D2 region of the large sub-unit (LSU) rRNA gene was amplified as previously 

reported (Palla et al., 2017).  

 

2.7. DGGE and profile analyses  

For the DGGE analysis, amplicons were separated in 8% (w/v) polyacrylamide gels with a 25‒60% 

urea-formamide gradient, using the DCode™ Universal Mutation Detection System (Bio-Rad, 

Milan, Italy). A composite mix of fungal 26S rDNA gene fragments from Saccharomyces 

cerevisiae ATCC 32167, Kazachstania exigua DBVPG 6956, Dekkera bruxellensis IMA 1L, 

Kazachstania humilis DBVPG 6754, Candida boidinii IMA 18S and Geotrichum candidum IMA 

F23 were added as reference DGGE markers (M). Gels were run and visualized as described in 

Agnolucci et al. (2013). DGGE profiles were digitally processed with BioNumerics software 

version 7.5 (Applied Maths, St-Martens-Latem, Belgium), and analyzed as reported in Turrini et al. 

(2017). A position tolerance and optimization of 0.5 and 0.5%, respectively, were used. DGGE 

profiles were also analyzed using non-metric multidimensional scaling analysis (NMDS) performed 

from a data matrix based on presence/absence of bands (Bray-Curtis coefficient). The significance 

of data was assessed by the one-way ANOSIM method (analysis of similarities; 999 permutations) 

using the software PAleontological STatistics Version 3.0 (Hammer et al., 2001) with oil type as 

variability factor.  

 

2.8. DGGE band sequencing  

The main bands of DGGE profiles were excised from the gels for sequencing at the Eurofins 

Genomics MWG Operon (Ebersberg, Germany) as reported in Palla et al. (2017). Sequences were 

analyzed using BLAST on the NCBI web (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The related 

sequences were collected and aligned using MUSCLE (Edgar, 2004a, b), and phylogenetic trees 

were constructed using the Neighbor-Joining method based on Kimura’s 2-parameter model 

(Kimura, 1980) in Mega 6 software (http://www.megasoftware.net/) with 1000 bootstrap replicates. 

ACCEPTED M
ANUSCRIP

T

http://www.megasoftware.net/


 9 

The sequences were submitted to the European Nucleotide Archive under the accession numbers 

from LT963318 to LT963347.  

  

3. Results and discussion 

3.1 Quantification of phenolic compounds  

Olive oil samples were analyzed for their phenolic compounds content, in particular of tyrosol and 

hydroxytyrosol and the corresponding secoiridoid derivatives oleocanthal and oleacein. The results 

are reported in Tables 3 and 4 (first and second milling, respectively). The chemical data 

corresponding to the time points of molecular analyses (time 0, 4 and 7 months of storage) are 

reported in Figs. S1 and S2 (oil A and B, respectively). As shown in Tables 3 and 4 and in Figs. S1 

and S2, in fresh oil (time 0) the amounts of both total and single phenols, oleocanthal, oleacein, 

tyrosol and hydroxytyrosol, varied in the two EVOOs, consistently with previous findings (Owen et 

al., 2000; Karkoula et al., 2012; Caporaso et al., 2015). In particular, independently of the milling 

period, oil A showed a higher content of oleocanthal compared with oil B, which showed the 

highest content of oleacein (Tables 3 and 4, Figs. S1 and S2). Furthermore, in both oils A and B, the 

concentration of secoiridoid compounds, oleocanthal and oleacein, was higher than that of the 

simple phenols which was very low, in accordance with the literature (Mazzotti et al., 2012, 

Caporaso et al., 2015). Overall, the concentration of phenols was higher than 250 ppm, consistent 

with the European health claim (EFSA, 2011). 

The concentration of phenolic compounds in the two EVOOs changed during storage. In particular, 

while the contents of oleocanthal and oleacein tended to decrease, those of simple phenols, tyrosol 

and hydroxytyrosol, increased, in agreement with previous findings (Montedoro et al., 1993; 

Pagliarini et al., 2000). The increase in the content of these simple phenolics may be ascribed to the 

hydrolytic degradation of the corresponding secoiridoid derivatives (Krichene et al., 2015; 

Migliorini et al., 2013). 
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In all oil samples oleacein displayed a higher rate of reduction than oleocanthal, confirming the data 

obtained by Karkoula et al. (2012). Indeed, the reduction of oleacein was about 75%, while the 

content of oleocanthal was reduced by 60% for both oils, during storage (seven months) and for 

both millings (Tables 3 and 4, Figs. S1 and S2). 

  

3.2. Yeast community diversity 

A DNA fragment of approximately 250 bp of the partial D1/D2 domain of 26S rRNA gene was 

successfully amplified from all oil samples. DGGE analyses of PCR products showed distinctive 

patterns, characterized by intense and clearly defined fragments. The microbial community 

composition was studied by cluster analysis of DGGE profiles (Fig. 2). Consistently with chemical 

findings, the dendrogram clearly separated the microbial populations of the two oils, with a 

similarity of only 41%. It is interesting to note that the cluster corresponding to oil A was further 

split into two sub-clusters (52% similarity), where the samples collected at time 0 grouped 

separately from those collected after 4 and 7 months storage (Fig. 2). The latter communities were 

further separated, on the basis of olive milling time, into two sub-clusters (55% similarity), whose 

samples were highly similar (82% and 81%), irrespective of the storage time (Fig. 2). Data from 

cluster analysis were confirmed by the NMDS analysis of the DGGE profiles (Fig. 3). ANOSIM 

revealed significant differences in the microbial community composition of the two EVOOs (R = 

0.962, p = 0.0001). Our findings cannot be compared with other works, as this is the first 

assessment of olive oil microbiota by molecular methods and in particular by PCR-DGGE analyses. 

However, the important changes in microbial community composition found in A olive oil samples 

between time 0 and times 4 and 7, as revealed by cluster analysis, are consistent with previous data 

obtained using a culture-dependent approach, that found strong variations during the first month of 

storage (Ciafardini et al., 2004). Such trend may be ascribed to the selective action exerted by the 

olive oil ecological niche, representing a stressful environment for the yeast community, which may 

ACCEPTED M
ANUSCRIP

T



 11 

be negatively affected by the absence of nutrients like sugars and proteins and a high content of 

total phenolics. 

In order to identify the major yeast species characterizing the two EVOOs, PCR-DGGE bands 

were excised, sequenced and affiliated to species by using BLAST and phylogenetic trees analyses. 

Sequences were affiliated with the yeast or yeast-like species Aureobasidium pullulans, Candida 

adriatica, Eremothecium coryli, Eremothecium cymbalariae, Geotrichum candidum, Lachancea 

fermentati, Ogataea phyllophila, and with the fungal species Cladosporium cladosporioides, 

Pseudophaeomoniella oleae and Pseudophaeomoniella oleicola. In addition, sequences affiliated to 

soil-borne fungi, such as Racocetra alborosea, Scutellospora gilmorei and Scutellospora pellucida 

were found (Fig. 4). 

As to the occurrence of the different species, sequences affiliated to the yeasts E. coryli, L. 

fermentati were retrieved from oil B (Fig. 4), confirming previous reports on the isolation of L. 

fermentati from crushed paste and pomaces in Tuscany, as well as in wastewater from continuous 

olive mills in Southern Italy and Spain (Romo-Sánchez et al., 2010; Mari et al., 2016). By contrast, 

the yeasts A. pullulans, C. adriatica, E. coryli, E. cymbalariae, G. candidum, O. phyllophila were 

retrieved in A olive oil (Fig. 4). Among such yeast species, C. adriatica was previously isolated 

from olive oil in Italy, Croatia and Slovenia (Čadež et al., 2012; Mari et al., 2016). The presence of 

A. pullulans confirms previous data on its isolation from washed olives (Deshpande et al., 1992; 

Mari et al., 2016) and its occurrence in a broad range of habitats, including the phyllosphere, i.e. the 

above-ground portion of olive plants representing a habitat for microorganisms (Gostinčar et al., 

2014). Its ability to produce a vast array of enzymes, including lipase (Gostinčar et al., 2014), could 

be relevant in the olive oil niche, although we cannot speculate on its functional significance. G. 

candidum is a ubiquitous yeast, previously reported to occur in olive paste and olive pomace (Baffi 

et al., 2012), able to produce the enzyme lipase, capable of hydrolyzing oleic acid esters, and 

recently proposed as a tool for partial hydrolysis of oils to produce nutraceutical diacylglycerols 

(Laguerre et al., 2017). Such compounds have shown nutraceutical properties, in particular for their 
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ability to reduce the amount of lipid stored in adipose tissue (Yuan et al., 2010). E. cymbalariae and 

E. coryli are plant pathogens causing fruit rotting “yeast spot disease” on diverse plant species, such 

as cotton and tomato (Miyao et al., 2000), probably occurring as casual contaminants, as well as O. 

phyllophila, a phylloplane yeast (Koowadjanakul et al., 2011). 

 

4. Conclusions 

Here, two Tuscan EVOOs revealing different contents of health-promoting phenolic 

compounds (oleocanthal, oleacein, tyrosol and hydroxytyrosol) showed also significant differences 

in yeast community composition, as detected by a culture-independent method, PCR-DGGE. While 

in the past olive oil was considered an unsuitable habitat for microorganisms, scientists are 

currently aware that it is a privileged niche for yeasts, originating from olives’ carposphere and 

migrating into olive oil during processing in the mill. Here, for the first time, using PCR-DGGE, we 

detected the presence of a large community of yeast species, which are able to condition the 

physicochemical and sensorial characteristics of olive oil, through the production of a vast array of 

enzymes (Ciafardini and Zullo, 2018). Further studies could answer the intriguing question as to 

whether single or complex consortia of oil-borne yeasts may play a role in the transformation and/or 

production of health-promoting oil phenolic compounds. 
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FIGURE CAPTIONS  

 

Figure 1. Chemical structure of major health-promoting phenolic compounds present in extra virgin 

olive oil. 

 

Figure 2. Dendrogram obtained from UPGMA analysis, using Dice’s coefficient, of DGGE profiles 

of microorganisms associated with extra virgin olive oils A and B, collected during the 1st (empty) 

and the 2nd (full) milling, at time 0 (square) and after 4 (circle) and 7 (triangle) months of storage. 

 

Figure 3. Non-metric multidimensional scaling (NMDS) plot of yeast DGGE profile analysis using 

Bray-Curtis coefficient. Each point on the plot represents yeast communities associated with extra 
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virgin olive oils A and B, collected during the 1st (empty) and the 2nd (full) milling, at time 0 

(square) and after 4 (circle) and 7 (triangle) months of storage. The stress value is 0.2, the ANOSIM 

values (R) indicates significant differences between the two olive oils (0.962, p = 0.0001). 

 

Figure 4. Affiliation of the sequences retrieved from DGGE gel bands with the existing sequences 

of the partial D1/D2 region of the large sub-unit rRNA gene. Phylogenetic analysis was inferred by 

using the Neighbor-Joining method based on Kimura’s 2-parameter model. Bootstrap (1000 

replicates) values below 70 are not shown. Evolutionary analyses were conducted in MEGA6. The 

sequences from the database are indicated by their accession numbers. The DNA sequences 

retrieved in this work are indicated by their corresponding band number and their accession 

number. Colored symbols indicate oil samples, A (full) and B (empty), analyzed at time 0 (square) 

and after 4 (circle) and 7 (triangle) months of storage. 
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FIGURES 
 
 

 

Figure 1. Chemical structure of major health-promoting phenolic compounds retrieved in extra 

virgin olive oil. 
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Figure 2. Dendrogram obtained from UPGMA analysis, using Dice’s coefficient, of DGGE profiles 

of microorganisms associated with extra virgin olive oils A and B, collected during the 1st (empty) 

and the 2nd (full) milling, at time 0 (square) and after 4 (circle) and 7 (triangle) months of storage. 
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Figure 3. Non-Metric MultiDimensional Scaling (NMDS) plot of yeast DGGE profile analysis 

using Bray-Curtis coefficient. Each point on the plot represents yeast communities associated with 

extra virgin olive oils A and B, collected during the 1st (empty) and the 2nd (full) milling, at time 0 

(square) and after 4 (circle) and 7 (triangle) months of storage. The stress value is 0.2, the ANOSIM 

values (R) indicates significant differences between the two olive oils (0.962, P=0.0001). 
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Figure 4. Affiliation of the sequences retrieved from DGGE gel bands with the existing sequences 

of the partial D1/D2 region of the large sub-unit rRNA gene. Phylogenetic analysis was inferred by 

using the Neighbor-Joining method based on the kimura 2-parameter model. Bootstrap (1000 

replicates) values below 70 are not shown. Evolutionary analyses were conducted in MEGA6. The 

sequences from the database are indicated by their accession numbers. The DNA sequences 

retrieved in this work are indicated by their corresponding band number and their accession 

number. Colored symbols indicate oil samples, A (full) and B (empty), analyzed at time 0 (square) 

and after 4 (circle) and 7 (triangle) months of storage. 

 

 

 

 

 

 

  

 36B-LT963341

 23B-LT963340

 36A-LT963345

 KP635971.1 Pseudophaeomoniella oleae FV84

  32A-LT963342

 35A-LT963344

 46A-LT963346

 34A-LT963343

 48A-LT963347

 KP635970.1 Pseudophaeomoniella oleicola M24

 37A-LT963338

 33A-LT963337

 47A-LT963339

Phaeomoniellales incertae sedis

 KX067796.1 Cladosporium cladosporioides isolate RP128 2 4

  44A-LT963335

 LC125562.1 Cladosporium cladosporioides AB16-3

 27A-LT963336

Cladosporiaceae

  43A-LT963334

 31A-LT963333

 KC160613.1 Aureobasidium pullulans NDZJ516

 GQ911488.1 Aureobasidium pullulans DBVPG 5173

 26A-LT963332

Saccotheciaceae

Pezizomycotina

 KY108694.1 Ogataea phyllophila CBS 12095

 8A-LT963331

 NG 055164.1 Ogataea kolombanensis ZIM 2322

Pichiaceae

 38A-LT963318

 10A-LT963319

 HE799679.1 Candida adriatica ZIM 2465 OS1/3

 KY106271.1 Candida adriatica CBS 12504

Phaffomycetaceae

 32B-LT963329

 18B-LT963330

 JF916451.1 Lachancea fermentati UCLM 85.1C

 NG 055076.1 Lachancea fermentati NRRL Y-1559

 XR 002431953.1 Eremothecium cymbalariae DBVPG 7215

 12A-LT963326

 40A-LT963327

 24B-LT963325

 7B-LT963324

 NG 055064.1 Eremothecium coryli NRRL Y-12970

 11A-LT963320

 39A-LT963322

 28A-LT963321

 45A-LT963323

Saccharomycetaceae

Saccharomycotina

 KY289994.1 Geotrichum candidum strain KS-4

 JN417625.1 Geotrichum sp. 190 LC-2011

 9A-LT963328

Dipodascaceae - Saccharomycotina
100

75

100

100

100

75
98

70

83

95

79
98

82

98
76

98

87

ACCEPTED M
ANUSCRIP

T



 25 

TABLES 

Table 1. Details of mobile phase related to the chromatographic method utilized.  

mobile phase fractions volume (mL) 

100% CHCl3 1 500 

95:5% CHCl3/AcOEt 2‒14 200 

90:10% CHCl3/AcOEt 15‒27 200 

85:15% CHCl3/AcOEt 28‒40 200 

80:20% CHCl3/AcOEt 41‒53 200 

75:25% CHCl3/AcOEt 54-66 200 

70:30% CHCl3/AcOEt 67‒79 200 

65:35% CHCl3/AcOEt 80‒92 200 

60:40% CHCl3/AcOEt 93‒105 200 

55:45% CHCl3/AcOEt 106‒108 200 

50:50% CHCl3/AcOEt 109‒145 600 

0:100% AcOEt 146‒170 400 
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Table 2. Calibration curve, determination coefficient (r2), limits of detection (LOD) and 

quantification (LOQ) for each standard phenolic compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compounds Calibration curves r2 LOQ (mg/kg) LOD (mg/kg) 

tyrosol Y = 1.026X + 0.04172 0.9997 0.10 0.40 

hydroxytyrosol Y = 1.883X + 0.04403 0.9996 0.10 1.00 

oleocanthal Y = 0.4088X + 0.008184 0.9998 0.90 5.20 

oleacein Y = 0.3158X + 0.005722 0.9999 0.50 1.60 
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Table 3. Concentrations of phenolic compounds in two different extra virgin olive oils (A and B), 

obtained from the first milling and stored from October 2015 to April 2016a 

time olive oil tyrosol hydroxytyrosol oleacein  oleocanthal 

October B 4.1±0.05 1.0±0.05 466±22.4 256±7.3 

October  A 7.1±0.3 1.3±0.2 159±7.2 400±24.6 

November B 4.2±0.3 1.3±0.1 408±6.8 251±21.2 

November A 9.4±0.2 2.4±0.05 156±11.8 373±21.6 

December B 5.7±0.1 2.3±0.3 407±22.4 245±16.3 

December A 14.1±0.5 3.2±0.05 127±6.2 296±18.9 

January B 13.8±0.1 4.4±0.1 261±4.9 199±11.4 

January A 35.7±1.5 8.4±0.5 95.8±8.3 262±25.3 

February B 20.8±0.3 6.6±0.2 206±11.7 163.9±7.2 

February A 57.3±0.9 12.6±0.5 69.3±1.7 189±10.1 

March B 28.9±0.9 9.4±0.2 162±12.7 141±5.9 

March A 81.0±1.3 21.6±0.1 63.3±0.7 153±1.2 

April B 37.5±0.8 10.9±0.3 129±8.2 101±7.2 

April A 86.7±1.2 22.6±0.5 48.9±3.7 130±13 

aPhenolic compounds are expressed in ppm  
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Table 4. Concentrations of phenolic compounds in two different extra virgin olive oils (A and B), 

obtained from the second milling and stored from December 2015 to June 2016a 

Time olive oil tyrosol hydroxytyrosol  oleacein  oleocanthal  

December B 8.5±0.7 2.8±0.1 249±21.7 203±14.8 

December A 4.4±0.3 0.3±0.03 108±9.9 371±26.0 

January B 9.3±0.4 4.0±0.6 226±5.2 198±7.5 

January A 7.4±0.9 1.2±0.05 88.2±4.6 331±20.0 

February B 11.9±0.3 5.3±0.2 198±4.9 191±15.6 

February A 12.1±0.9 2.3±0.2 66.1±6.2 293±17.9 

March B 17.1±0.8 8.5±0.3 190±6.4 189±4.2 

March A 16.9±0.2 3.3±0.1 48.4±2.1 234±21.3 

April B 17.6±0.5 8.6±0.8 121±2.4 133±4.4 

April A 52.1±1.3 11.3±0.4 23.8±0.6 108±7.9 

May B 26.1±1.4 9.4±0.3 107±7.8 117±10.3 

May A 55.2±0.6 11.4±0.5 22.7±1.5 90.1±4.2 

June B 35.0±0.8 10.7±0.3 71.7±5.0 91.1±5.1 

June A 68.0±1.4 11.4±0.4 14.2±0.5 87.1±4.7 

aPhenolic compounds are expressed in ppm 
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