58 research outputs found

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    The VISTA Variables in the Vía Láctea eXtended (VVVX) ESO public survey: Completion of the observations and legacy

    Get PDF
    © 2024 ESO. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1051/0004-6361/202450584The ESO public survey VISTA Variables in the V\'ia L\'actea (VVV) surveyed the inner Galactic bulge and the adjacent southern Galactic disk from 200920152009-2015. Upon its conclusion, the complementary VVV eXtended (VVVX) survey has expanded both the temporal as well as spatial coverage of the original VVV area, widening it from 562562 to 17001700 sq. deg., as well as providing additional epochs in JHKsJHK_{\rm s} filters from 201620232016-2023. With the completion of VVVX observations during the first semester of 2023, we present here the observing strategy, a description of data quality and access, and the legacy of VVVX. VVVX took 2000\sim 2000 hours, covering about 4% of the sky in the bulge and southern disk. VVVX covered most of the gaps left between the VVV and the VISTA Hemisphere Survey (VHS) areas and extended the VVV time baseline in the obscured regions affected by high extinction and hence hidden from optical observations. VVVX provides a deep JHKsJHK_{\rm s} catalogue of 1.5×109\gtrsim 1.5\times10^9 point sources, as well as a KsK_{\rm s} band catalogue of 107\sim 10^7 variable sources. Within the existing VVV area, we produced a 5D5D map of the surveyed region by combining positions, distances, and proper motions of well-understood distance indicators such as red clump stars, RR Lyrae, and Cepheid variables. In March 2023 we successfully finished the VVVX survey observations that started in 2016, an accomplishment for ESO Paranal Observatory upon 4200 hours of observations for VVV+VVVX. The VVV+VVVX catalogues complement those from the Gaia mission at low Galactic latitudes and provide spectroscopic targets for the forthcoming ESO high-multiplex spectrographs MOONS and 4MOST.Peer reviewe

    Simulating the performance of the Southern Wide-view Gamma-ray Observatory

    Get PDF
    The Southern Wide-view Gamma-ray Observatory (SWGO) will be a next-generation gamma-ray observatory using a large array of particle detectors at a high elevation site in South America. This project is currently in a three years R&D phase in which the design will be optimised for cost and performance. Therefore it is crucial to efficiently evaluate the impact of different design options on the scientific objectives of the observatory. In this contribution, we will introduce the strategy and the simulation framework in which this evaluation takes place

    Study of water Cherenkov detector designs for the SWGO experiment

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a next-generation ground-based gamma-ray detector under development to reach a full sky coverage together with the current HAWC and LHAASO experiments in the northern hemisphere. It will complement the observation of transient and variable multi-wavelength and multi-messenger phenomena, offering moreover the possibility to access the Galactic Centre. One of the possible SWGO configurations consists of an array of water Cherenkov tanks, with a high fill-factor inner array and a low-density outer array, covering an overall area of one order of magnitude larger than HAWC. To reach a high detection efficiency and discrimination capability between gamma-ray and hadronic air showers, various tank designs were studied. Double-layer tanks with several sizes, shapes and number of photomultiplier tubes have been considered. Single-particle simulations have been performed to study the tank response, using muons, electrons, and gamma-rays with energies typical of extensive air showers particles, entering the tanks with zenith angles from 0 to 60 degrees. The tank response was evaluated considering the particle detection efficiency, the number of photoelectrons produced by the photomultiplier tubes, and the time resolution of the measurement of the first photon. The study allowed to compare the performance of tanks with circular and square base, to understand which design optimizes the performance of the array. The method used in the study and the results will be discussed in this paper

    The Southern Wide-field Gamma-ray Observatory reach for Primordial Black Hole evaporation

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars; optimisation of the angular resolution to mitigate source confusion between known TeV sources; and studies of the energy resolution and sensitivity required to study the spectral features of PeVatrons at the highest energies. Such a facility will ideally complement contemporaneous observatories in studies of high energy astrophysical processes in our Galaxy

    Galactic Science with the Southern Wide-field Gamma-ray Observatory

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic science with this Observatory. Particular focus will be given to the detectability of extended sources, such as gamma-ray halos around pulsars; optimisation of the angular resolution to mitigate source confusion between known TeV sources; and studies of the energy resolution and sensitivity required to study the spectral features of PeVatrons at the highest energies. Such a facility will ideally complement contemporaneous observatories in studies of high energy astrophysical processes in our Galaxy
    corecore