1,870 research outputs found

    Effect of graphene substrate on the SERS Spectra of Aromatic bifunctional molecules on metal nanoparticles

    Get PDF
    The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Existence of Solutions for a Wave Equation with Non-monotone Nonlinearity and a Small Parameter

    Get PDF
    We provide sufficient conditions for the existence of solutions to a semilinear wave equation with non-monotone nonlinearity involving a small parameter. Our results are based on the analysis of a an operator that characterizes the projection onto the kernel of the wave operator subject to periodic-Dirichlet boundary conditions. Such a kernel is infinite dimensional which makes standard compactness arguments inapplicable

    Efeitos Residuais Da Calagem Superficial Em Solo Tropical Com Plantio Direto

    Get PDF
    The objective of this work was to evaluate the long-term effects of the surface application of lime on soil fertility and on the mineral nutrition and grain yield of soybean, and of black oat and sorghum in crop succession. The experiment was carried out on a clayey Oxisol, in a randomized complete block design, with four replicates. Treatments consisted of lime the rates of 0, 1,000, 2,000, and 4,000 kg ha-1, applied in October 2002 and November 2004. Soil samples were collected at five soil layers, down to 0.60-m depth. Surface liming was effective in reducing soil acidity and increasing Ca2+ and Mg2+ contents in the subsurface. Moreover, it increased available phosphorus contents and soil organic matter in the long term (48 to 60 months after the last lime application). Surface liming improved plant nutrition, mainly for N, Ca, and Mg, and increased dry matter production and grain yield of the crops, even in years with regular distribution of rainfall. The greatest productivities of soybean, black oat, and sorghum were obtained with the respective estimated lime doses of 4,000, 2,333, and 3,281 kg ha-1, for shoot dry matter, and of 2,550, 3,555, and over 4,000 kg ha-1, for grain yield.5191633164

    Synthesis, characterization of a new carbonylated zirconium metallocene using a dichloro-zirconocene derived from partially alkylated s-indacene

    Get PDF
    Indexación: ScieloThis work describes the synthesis and characterization of new organometallic species, an unprecedented mononuclear zirconium complex bearing a tetraalkylated s-indacene ligand, and secondly, its respective dicarbonyl complex obtained by reduction with Mg/HgCl2. Theoretical calculations of these two compounds were carried out to gain further understanding of these novel molecular systems.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072009000300014&lng=es&nrm=is

    Secular variations of magma source compositions in the North Patagonian batholith from the Jurassic to Tertiary: Was mélange melting involved?

    Get PDF
    This study of Sr-Nd initial isotopic ratios of plutons from the North Patago nian batholith (Argentina and Chile) revealed that a secular evolution spanning 180 m.y., from the Jurassic to Neogene, can be established in terms of magma sources, which in turn are correlated with changes in the tectonic regime. The provenance and composition of end-member components in the source of mag mas are represented by the Sr-Nd initial isotopic ratios (87Sr/86Sr and 143Nd/144Nd) of the plutonic rocks. Our results support the interpretation that source compo sition was determined by incorporation of varied crustal materials and trench sediments via subduction erosion and sediment subduction into a subduction channel mélange. Subsequent melting of subducted mélanges at mantle depths and eventual reaction with the ultramafic mantle are proposed as the main causes of batholith magma generation, which was favored during periods of fast conver gence and high obliquity between the involved plates. We propose that a parental diorite (= andesite) precursor arrived at the lower arc crust, where it underwent fractionation to yield the silicic melts (granodiorites and granites) that formed the batholiths. The diorite precursor could have been in turn fractionated from a more mafic melt of basaltic andesite composition, which was formed within the mantle by complete reaction of the bulk mélanges and the peridotite. Our proposal follows model predictions on the formation of mélange diapirs that carry fertile subducted materials into hot regions of the suprasubduction mantle wedge, where mafic parental magmas of batholiths originate. This model not only accounts for the secular geochemical variations of Andean batholiths, but it also avoids a fundamental paradox of the classical basalt model: the absence of ultramafic cumulates in the lower arc crust and in the continental crust in general

    Comments on Charges and Near-Horizon Data of Black Rings

    Full text link
    We study how the charges of the black rings measured at the asymptotic infinity are encoded in the near-horizon metric and gauge potentials, independent of the detailed structure of the connecting region. Our analysis clarifies how different sets of four-dimensional charges can be assigned to a single five-dimensional object under the Kaluza-Klein reduction. Possible choices are related by the Witten effect on dyons and by the large gauge transformation in four and five dimensions, respectively.Comment: 30 pages, 1 figure; v2: additional references; v3: published versio

    Statistical disclosure control in tabular data

    Get PDF
    Data disseminated by National Statistical Agencies (NSAs) can be classified as either microdata or tabular data. Tabular data is obtained from microdata by crossing one or more categorical variables. Although cell tables provide aggregated information, they also need to be protected. This chapter is a short introduction to tabular data protection. It contains three main sections. The first one shows the different types of tables that can be obtained, and how they are modeled. The second describes the practical rules for detection of sensitive cells that are used by NSAs. Finally, an overview of protection methods is provided, with a particular focus on two of them: “cell suppression problem” and “controlled tabular adjustment”.Postprint (published version

    Active control of qubit-qubit entanglement evolution

    Full text link
    In this work, we propose a scheme to design the time evolution of the entropy of entanglement between two qubits. It is shown an explicit accurate solution for the inverse problem of determining the time dependence of the coupling constant from a user-defined dynamical entanglement function. Such an active control of entanglement can be implemented in many different physical implementations of coupled qubits, and we briefly comment on the use of interacting flux qubits.Comment: Author added, Expanded version, 10 figure
    corecore