Claremont Colleges Scholarship @ Claremont

All HMC Faculty Publications and Research

HMC Faculty Scholarship

6-1-2011

Existence of Solutions for a Wave Equation with Non-monotone Nonlinearity and a Small Parameter

Jose F. Caicedo Universidad Nacional de Colombia

Alfonso Castro Harvey Mudd College

Rodrigo Duque Universidad Nacional de Colombia

Recommended Citation

Caicedo, Jose F., Alfonso Castro and Rodrigo Duque. "Existence of Solutions for a Wave Equation with Non-monotone Nonlinearity and a Small Parameter", Milan Journal of Mathematics, Volume 79, Number 1, (2011), pp. 207-220.

This Article - postprint is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

Existence of Solutions for a Wave Equation with Non-monotone Nonlinearity and a Small Parameter

José F. Caicedo, Alfonso Castro and Rodrigo Duque*

Abstract. We provide sufficient conditions for the existence of solutions to a semilinear wave equation with non-monotone nonlinearity involving a small parameter. Our results are based on the analysis of a an operator that characterizes the projection onto the kernel of the wave operator subject to *periodic-Dirichlet* boundary conditions. Such a kernel is infinite dimensional which makes standard compactness arguments inapplicable.

Mathematics Subject Classification (2010). Primary 35L75; Secondary 34B15. Keywords. Semilinear wave equation, characteristic line, infinite dimensional kernel.

1. Introduction

Based on the results of [1] and the methods introduced in [6], we study the equation

$$\begin{cases} \Box u = \epsilon (u^{2k} + h(t, x) + R(t, x, u)) \\ u(t, 0) = u(t, \pi) = 0 \\ u(t, x) = u(t + 2\pi, x) \end{cases}$$
(1)

where $\Box = \partial_{tt} - \partial_{xx}$ denotes the D'Alembert operator, k is a positive integer, $t \in \mathbb{R}, x \in [0, \pi]$ and $R \in C^0(\mathbb{R} \times [0, \pi] \times \mathbb{R})$ is 2π -periodic in its first variable. We assume that R is differentiable in its third variable, and that

$$R(t, x, 0) = 0$$
 and $\lim_{u \to 0} \frac{R_u(t, x, u)}{u^{2k-1}} = 0,$ (2)

uniformly for $(t, x) \in \mathbb{R} \times [0, \pi]$.

The key feature of equation (1) is that, regardless of the size of ϵ , the derivative of the nonlinearity includes the eigenvalue 0 which has infinite multiplicity (see (3) below) making compactness arguments not applicable. All the results of this paper

^{*}Part of this research was done while the third author was a UNIALA doctoral fellow.

extend to the case where, in (1), u^{2k} is replaced by $\beta(x)u^{2k}$ with β a positive continuous function such $\beta(x) = \beta(\pi - x)$. For the sake of simplicity in the presentation we restrict ourselves to the case $\beta(x) \equiv 1$.

Throughout this paper all functions are 2π -periodic in the variable t.

The kernel of \Box subject to the boundary conditions in (1) is

$$N = \{v(t,x) = p(t+x) - p(t-x); \ p \in L^2([0,2\pi]), \ \int_0^{2\pi} p(s)ds = 0\}$$

= $\{v(t,x) = p(t+x) - p(t-x); \ p \in L^2([0,2\pi])\}.$ (3)

Let $\Omega = [0, 2\pi] \times [0, \pi],$

$$N^{\perp} = \{ w : \mathbb{R} \times [0,\pi] \to \mathbb{R}; w \in L^{2}(\Omega), \int_{\Omega} wv = 0 \quad \forall v \in N \},$$

$$\mathbf{H}^{1} = \{ w : \mathbb{R} \times [0,\pi] \to \mathbb{R}; w, w_{t}, w_{x} \in L^{2}(\Omega), \ w(t,0) = w(t,\pi) = 0 \},$$

$$(4)$$

For $1 \leq p < \infty$, the norm in $L^p(\Omega)$ will be denoted by $\|\cdot\|_p$; the norms in L^∞ and C^0 will simply be denoted by $\|\cdot\|$. The norm in the space \mathbf{H}^1 will be denoted by $\|\cdot\|_{1,2}$ and is defined as

$$\|w\|_{1,2} = \left(\int_{\Omega} (w_t^2(t,x) + w_x^2(t,x))dtdx\right)^{1/2}.$$
(5)

An elementary argument based on Fourier expansions shows that for each $f \in N^{\perp}$ there exists a unique $w \in \mathbf{H}^1 \cap N^{\perp}$ such that $\Box(w) = f$ in the sense of distributions. Moreover, the transformation $f \to w \equiv \Box^{-1}(f)$ is continuous as an operator from $L^2(\Omega) \cap N^{\perp}$ into $\mathbf{H}^1 \cap N^{\perp}$, from $L^2(\Omega) \cap N^{\perp}$ into $L^{\infty} \cap N^{\perp}$, and from $L^{\infty}(\Omega) \cap N^{\perp}$ into $C^{0,1} \cap N^{\perp}$. Thus there exists a constant c_0 such that

$$\|\Box^{-1}f\|_{1,2} \le c_0 \|f\|_2, \|\Box^{-1}f\|_{\infty} \le c_0 \|f\|_2, \text{ and } \|\Box^{-1}f\|_{C^{0,1}} \le c_0 \|f\|_{\infty}, \qquad (6)$$

see [1], (2.3).

For the rest of this paper $h \in N^{\perp}$. Letting $H = \Box^{-1}(h) + v$, with $v \in N$, subtracting $\Box(\epsilon H) = \epsilon h$ from both sides of the first equation in (1) and replacing $u - \epsilon H$ by u that equation becomes

$$\Box u = \epsilon (u + \epsilon H)^{2k} + \epsilon R(t, x, u + \epsilon H),$$
(7)

subject to the boundary conditions in (1).

We establish the solvability of (7) in terms of the operator $L_J : C^0((0, 2\pi)) \to C^0((0, 2\pi))$ defined by

$$(L_J(p))(r) = p(r) \int_0^{\pi} \{J(r+x,x) + J(r-x,x)\} dx - \int_0^{\pi} \{p(r+2x)J(r+x,x) + p(r-2x)J(r-x,x)\} dx$$
(8)

where $p(t+x) - p(t-x) = v(t,x) \in N$, $r \in [0, 2\pi]$.

In fact, our main result is:

Theorem 1. Suppose (2) is satisfied and let Π_N denote the $L^2(\Omega)$ -orthogonal projection onto N. If

- a) k = 1 and L_H is invertible, or
- b) k > 1, and there exists $\hat{v} \in N$ such that $\|\hat{v}\| \le O(\epsilon)$, $\Pi_N(\hat{v} + \epsilon H)^{2k} = 0$ and L_J is invertible for $J = (\hat{v} + \epsilon H)^{2k-1} \hat{v}^{2k-1}$ with $\epsilon^{1-2k} \|L_J\|$ bounded away from zero,

then there exist $\epsilon_0 > 0$ such that for $\epsilon \in (0, \epsilon_0)$ the equation (7) has a solution $u \in C^0(\Omega)$.

Our next result shows that Theorem 1 includes the existence results in [1]. In fact, we have:

Theorem 2. If, for some $v \in N$, H is continuous and H(t, x) > 0 for all $(t, x) \in \Omega$, then L_H is invertible. If, in addition, k > 1 then there exists $\hat{v} \in N$ satisfying part b) in Theorem 1. Hence there exist $\epsilon_0 > 0$ such that for $\epsilon \in (0, \epsilon_0)$ the equation (7) has a solution $u \in C^0(\Omega)$.

The positivity of H is not a necessary condition for the invertivility of L_H . For example if $h(t, x) = 9\sin(3x) + h_1(t, x)$ with h_1 small enough then $H = \Box^{-1}h + v$ changes sign for any $v \in N$ and yet L_H is invertible. This is a case where Theorem 1 applies but not the results of [1]. See Theorem 3 in Section 5 below.

The operator L_H was introduced in [5] to prove the nonexistence of continuous solutions to

$$\Box u = g(u) + \lambda u + h(t, x), \quad u(t, x) = u(t + 2\pi, x) = u(t, x + 2\pi)$$
(9)

when λ is not an eigenvalue of \Box subject to the periodicity condition in (9), g has compact support, $\lambda u + g(u)$ is not monotone, and h is a large multiple of $\sin(t+x)$. The operator L_H was also used in [6] to prove the existence of solutions to (9) when h does not vanish on sets of positive measure in any characteristic line. For results on (9) the reader is referred to [2, 3, 12], for the other studies on the non-monotone case see [4, 9, 13].

Following the results in [8], if the functions h and R satisfy the symmetry $h(t, x) = h(t + \pi, \pi - x), R(t, x, u) = R(t + \pi, \pi - x, u)$ then one may restrict the study of equation (1) to spaces of functions u with this symmetry. Since no non-zero element in N satisfies this symmetry, $\prod_N((u + \epsilon H)^{2k} + R(t, x, u + \epsilon H)) = 0$ for any u satisfying the symmetry (see (10) below). This reduces the solvability of (1) to the solvability of the range equation (11) which is easily solved for ϵ small under no additional hypothesis on h, see Section 2.

The solutions given by Theorem 1 satisfy $||u|| \leq O(\epsilon)$. This cannot happen if $h \notin N^{\perp}$, see [1], Remark 1.1. Thus the assumption $h \in N^{\perp}$ is necessary. If H > 0 and smooth the solutions to (1) are smooth (see [1], Theorem 2.) The regularity of the solutions here obtained for H changing sign is yet to be studied.

2. Solvability in N^{\perp}

Let $V = N \cap C^0(\Omega)$, $W = N^{\perp} \cap C^0(\Omega)$ and Π_N , $\Pi_{N^{\perp}}$ the orthogonal projections from $L^2(\Omega)$ onto N and N^{\perp} , respectively.

Setting u = v + w with $v \in V$ and $w \in W$, the problem (7) is equivalent to solving the kernel and the range equations

$$\Pi_N((v+w+\epsilon H)^{2k} + R(t,x,v+w+\epsilon H)) = 0,$$
(10)

$$\epsilon \Box^{-1} \Pi_{N^{\perp}} ((v+w+\epsilon H)^{2k} + R(t,x,v+w+\epsilon H)) = w.$$
(11)

In order to solve the kernel equation, (10), we will follow the methods introduced in [5, 6]. The following proposition summarizes the solvability of the range equation, (11). We omit its proof as, up to minor details, it is given by the proof of Proposition 3.2 of [1].

Proposition 1. There exist $\hat{\epsilon} > 0$ and $\delta_0 > 0$ such that if $v \in V$ with $||v||_{C^0} \leq \delta_0$ and $|\epsilon| < \hat{\epsilon}$ then (11) has a unique solution $w(v, \epsilon) \in N^{\perp}$. Moreover there exists $\alpha > 0$ such that

$$\|w(v,\epsilon)\| \le \alpha |\epsilon| (\|v\|^{2k} + |\epsilon|^{2k}) \quad and \quad \|w(v_1,\epsilon) - w(v_2,\epsilon)\| \le |\epsilon| \alpha \|v_1 - v_2\|, \quad (12)$$

for all v, v_1, v_2 with $||v||, ||v_1||, ||v_2|| \le \delta_0$, and $|\epsilon| \le \hat{\epsilon}$.

3. Proof of Theorem 1

We prove in detail the case k > 1; the case k = 1 follows the same pattern with $\hat{v} = 0$ making the calculations a lot simpler.

Let \hat{v} be as in part b) of Theorem 1, and $v = \hat{v} + \zeta$. Since the product of an even number of elements in N is in N^{\perp} , $\Pi_N(\hat{v}^{2k-1}\zeta) = 0$ (see [1, Lemma 2.4]). Therefore (10) is equivalent to

$$0 = \Pi_N \Big(-2k\hat{v}^{2k-1}\zeta + (\hat{v} + \epsilon H)^{2k} + 2k(\hat{v} + \epsilon H)^{2k-1}\zeta + 2k(\hat{v} + \epsilon H)^{2k-1}w \\ + \sum_{j=2}^{2k} C_j(\hat{v} + \epsilon H)^{2k-j}(\zeta + w)^j + R(t, x, \hat{v} + \zeta + w + \epsilon H) \Big) \\ = \Pi_N \Big(2kJ\zeta + 2k(\hat{v} + \epsilon H)^{2k-1}w + \sum_{j=2}^{2k} C_j(\hat{v} + \epsilon H)^{2k-j}(\zeta + w)^j \\ + R(t, x, \hat{v} + \zeta + w + \epsilon H) \Big) \\ \equiv \Pi_N \Big(2kJ\zeta + Q(\zeta, \epsilon, H) \Big),$$
(13)

where C_j is the binomial coefficient 2k choose j, and $J = (\hat{v} + \epsilon H)^{2k-1} - \hat{v}^{2k-1}$.

Let $z : \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function such that $\zeta(t, x) = z(t+x) - z(t-x)$ with $\int_0^{2\pi} z(s) ds = 0$. Vol. 79 (2011)

As in [6], for $0 \le r \le s \le 2\pi$ let $\chi_{[r,s]}$ be the 2π -periodic function such that

$$\chi_{[r,s]}(t) = \begin{cases} 1, & t \in [r,s] \\ 0, & t \in [0,2\pi] - [r,s] \end{cases}$$
(14)

and let ϕ be the function defined by

$$\phi(t,x) = \chi_{[r,s]}(t+x) - \chi_{[r,s]}(t-x) \in N$$
(15)

Also we let

$$A = \{(t, x) \in \Omega; \ x \in [0, \pi], \ t \in \bigcup_{j} [r + 2j\pi - x, s + 2j\pi - x],$$

$$j = 0, 1\}$$

$$B = \{(t, x) \in \Omega; \ x \in [0, \pi], \ t \in \bigcup_{j} [r + 2j\pi + x, s + 2j\pi + x],$$

$$j = -1, 0\}.$$
(16)

From now on, for the sake of simplicity in the notations, we write $dtdx = d\sigma$.

Multiplying ζJ by ϕ and integrating on Ω we obtain

$$\int_{\Omega} \zeta J\phi d\sigma = \int_{\Omega} z(t+x)J(t,x)\phi(t,x)d\sigma - \int_{\Omega} z(t-x)J(t,x)\phi(t,x)d\sigma$$
$$= \int_{B} z(t+x)J(t,x)d\sigma - \int_{A} z(t+x)J(t,x)d\sigma$$
$$- \int_{B} z(t-x)J(t,x)d\sigma + \int_{A} z(t-x)J(t,x)d\sigma$$
$$= \int_{0}^{\pi} \int_{r}^{s} \left(z(\eta)J(\eta-x,x) - z(\eta+2x)J(\eta+x,x) \right) d\eta dx$$
$$- \int_{0}^{\pi} \int_{r}^{s} \left(z(\eta-2x)J(\eta-x,x) - z(\eta)J(\eta+x,x) \right) d\eta dx.$$

By the Lebesgue differentiation theorem (see (49) in [2]), for almost every $r \in [0, 2\pi]$,

$$\lim_{s \to r} \frac{1}{s - r} \int_{\Omega} \zeta J \phi d\sigma = \int_{0}^{\pi} (z(r) - z(r - 2x)) J(r - x, x) dx + \int_{0}^{\pi} (z(r) - z(r + 2x)) J(r + x, x) dx = [L_{J}(z)](r).$$
(18)

Similarly, multiplying $Q(\zeta, \epsilon, H)$ by ϕ , integrating on Ω , dividing by s-r, and taking limit as s tend to r we have

$$\lim_{s \to r} \frac{1}{s - r} \int_{\Omega} Q(\zeta, \epsilon, H) \phi d\sigma = \int_{0}^{\pi} Q(\zeta, \epsilon, H) (r - x, x) dx + \int_{0}^{\pi} Q(\zeta, \epsilon, H) (r + x, x)) dx \qquad (19)$$
$$\equiv [\Gamma(z)](r).$$

Hence if $v = \hat{v} + \zeta$ and $w = w(v, \epsilon)$ satisfies (10) then $2kL_J(z) = \Gamma(z)$ (see Proposition 1). Conversely, if z satisfies $z = (1/(2k))L_J^{-1}\Gamma(z) \equiv \Gamma_1(z)$ then $v + w(v, \epsilon)$ satisfies (10) (see [6, Lemma 1.3].) Therefore $v + w(v, \epsilon)$ solves (1).

Let M > 0 be such that $\|\hat{v}\| + \epsilon \|H\| \leq M\epsilon$ for all $\epsilon \in (0, \hat{\epsilon})$. Due to assumption b), by further restricting $\hat{\epsilon}$ if needed, there exists m > 0 such that $\epsilon^{2k-1} \|L^{-1}\| \leq m$ for all $\epsilon \in (0, \hat{\epsilon})$. Since k > 1, there exist $\epsilon_3 \in (0, \hat{\epsilon})$ and $\tau > 0$ be such that

$$2kM^{2k-1}\alpha\mu\epsilon_{3}^{2k} + \sum_{j=2}^{2k} D_{j}(2\tau + \alpha\mu\epsilon_{3}^{2k})^{j} \leq \frac{\tau}{4\pi},$$

$$m\left(2k\alpha M^{2k-1}\epsilon_{3} + \sum_{j=2}^{2k} jD_{j}(2\tau + \alpha\epsilon_{3}^{2k}\mu)^{j-1}\right) \leq \frac{1}{8\pi},$$
(20)

where $D_j = C_j M^{2k-j}$ and $\mu = (M+2\tau)^{2k} + 1$. Next we choose $\gamma > 0$ be such that

$$4\pi\gamma < \min\left\{\frac{\tau}{(M+2\tau+\alpha\epsilon_3^{2k}\mu)^{2k}}, \frac{1}{2m(1+\alpha\epsilon_3)(2\tau+M+\alpha\mu\epsilon_3^{2k})^{2k-1}}\right\}.$$
 (21)

By (2), there exists $\delta > 0$ such that if $|s| < \delta$ then $|R(t, x, s)| < \gamma s^{2k}$ and $|R_u(t, x, s)| \leq \gamma |s|^{2k-1}$. Finally we take $\epsilon_4 \in (0, \epsilon_3)$ such that

$$\epsilon_4(2M + 2\tau + \alpha \epsilon_4^{2k}) < \delta.$$
⁽²²⁾

Now for $||z|| \leq \tau \epsilon$ we have $||\zeta|| \leq 2\tau \epsilon$, and $||w(\hat{v} + \zeta, \epsilon)|| \leq \alpha (M + 2\tau)^{2k} \epsilon^{2k+1}$. Therefore

$$\begin{aligned} |Q(\zeta, \epsilon, H)|| &\leq 2k \| (\hat{v} + \epsilon H)^{2k-1} w \| + \sum_{j=2}^{2k} C_j (M\epsilon)^{2k-j} \| \zeta + w \|^j \\ &+ \| R(t, x, \hat{v} + \zeta + w + \epsilon H) \| \\ &\leq 2k M^{2k-1} \alpha (M + 2\tau)^{2k} \epsilon^{4k} \\ &+ \sum_{j=2}^{2k} D_j \epsilon^{2k-j} (2\tau\epsilon + \alpha (M + 2\tau)^{2k} \epsilon^{2k+1})^j \\ &+ \gamma \| \hat{v} + \zeta + w + \epsilon H) \|^{2k} \\ &\leq \epsilon^{2k} (2k M^{2k-1} \alpha (M + 2\tau)^{2k} \epsilon^{2k} \\ &\sum_{j=2}^{2k} D_j (2\tau + \alpha (M + 2\tau)^{2k} \epsilon^{2k})^j \\ &+ \gamma (M + 2\tau + \alpha \mu \epsilon^{2k}) \Big) \\ &\leq \tau \epsilon^{2k}. \end{aligned}$$
(23)

Let $\zeta_i(t, x) = z_i(t+x) - z_i(t-x)$ for i = 1, 2, and $w_i = w(\hat{v} + \zeta_i, \epsilon)$ with $||z_i|| \le \tau \epsilon$. Thus, from the definition of Q, Proposition 1, (20), (21) and (22), we have

$$\begin{aligned} \|Q(\zeta_{1},\epsilon,H) - Q(\zeta_{2},\epsilon,H)\| &\leq 2k \|(\hat{v}+\epsilon H)^{2k-1}\| \|w_{1}-w_{2}\| \\ &+ \sum_{j=2}^{2k} C_{j}(M\epsilon)^{2k-j} \|(\zeta_{1}+w_{1})^{j} - (\zeta_{2}+w_{2})^{j}\| \\ &+ \|R(t,x,\hat{v}+\zeta_{1}+w_{1}+\epsilon H) - R(t,x,\hat{v}+\zeta_{2}+w_{2}+\epsilon H)\| \\ &\leq 2k(M\epsilon)^{2k-1}\alpha\epsilon \|\zeta_{1}-\zeta_{2}\| \\ &+ \left(\sum_{j=2}^{2k} D_{j}\epsilon^{2k-j}(1+\epsilon\alpha)\sum_{i=0}^{j-1} \|(\zeta_{1}+w_{1})^{j-1-i}(\zeta_{2}+w_{2})^{i}\| \\ &+ \gamma(2M+1+\alpha)^{2k-1}\epsilon^{2k-1}\right) \|\zeta_{1}-\zeta_{2}\| \\ &\leq \epsilon^{2k-1} \left(\sum_{j=2}^{2k} D_{j}(1+\epsilon\alpha)j(2\tau+\alpha\mu\epsilon^{2k})^{j-1} \\ &+ 2kM^{2k-1}\alpha\epsilon + \gamma(1+\alpha\epsilon)(2\tau+M+\alpha\mu\epsilon^{2k})^{2k-1}\right) \|\zeta_{1}-\zeta_{2}\| \\ &\leq \frac{1}{2\|L_{J}^{-1}\|} \|\zeta_{1}-\zeta_{2}\|. \end{aligned}$$

From (23) we see that $(\epsilon^{1-2k}/(2k))L_J^{-1}\Gamma$ transforms the metric space $\{z; ||z|| \leq \tau\epsilon\}$ into itself. Also (24) proves that $(\epsilon^{1-2k}/(2k))L_J^{-1}\Gamma$ is a contraction. Hence it has a unique fixed point which proves Theorem 1.

4. Proof of Theorem 2

Let

$$X_2 = \left\{ p \in C^0(\mathbb{R}); p(x) = p(x+2\pi), \int_0^{2\pi} p(s)ds = 0, \|p\|_{C^0} = 1 \right\}$$

For each $p \in X_2$, let $r_p \in [0, 2\pi]$ be such that $|p(r_p)| = 1$. We claim that

$$\inf_{p \in X_2} |L_H(p)(r_p)| > 0.$$
(25)

Let us assume that there exists a sequence $\{p_n\}$ in X_2 such that $|L_H(p_n)(r_{p_n})| < 1/n$. Without loss of generality we may assume that $p_n(r_{p_n}) = 1$. Hence

$$\frac{1}{n} \ge L_H(p_n)(r_{p_n})
= \int_0^{\pi} (1 - p_n(r_{p_n} - 2x)) H(r_{p_n} - x, x) dx
+ \int_0^{\pi} (1 - p_n(r_{p_n} + 2x)) H(r_{p_n} + x, x) dx
\ge \int_0^{\pi} (1 - p_n(r_{p_n} - 2x)) H(r_{p_n} - x, x) dx.$$
(26)

Therefore

$$\{\sqrt{(1 - p_n(r_{p_n} + 2x))H(r_{p_n} + x, x)}\} \to 0, \text{ in } L^2.$$
(27)

Hence there exists a subsequence $\{p_{n_k}\}$ of $\{p_n\}$ such that

$$\left\{ (1 - p_{n_k}(r_{p_{n_k}} + 2x))H(r_{p_{n_k}} + x, x) \right\} \to 0$$
(28)

almost everywhere on $[0, \pi]$. Since H(t, x) > 0, $\forall (t, x) \in \Omega$, then the sequence $\{p_{n_k}\} \to 1$ a.e. $[0, 2\pi]$. But this is a contradiction, because $\int_0^{2\pi} p_{n_k}(s) ds = 0$ for all k. Hence (25) is proven, which proves that L_H is invertible. Thus the first statement in Theorem 2 is proven.

In order to prove the second statement in Theorem 2 we define $\hat{v} = \epsilon V$, with V as given by Lemma 3. Since $(\hat{v} + \epsilon H)^{2k-1} - \hat{v}^{2k-1} \ge 2((\epsilon H)/2)^{2k-1}$ the second stament in Theorem 2 is proven. The third statement in Theorem 2 follows from Theorem 1, which completes the proof of Theorem 2.

5. Examples of invertivility of L when H changes sign

In this section we make use of Fourier expansions to provide examples in which $L_H \equiv L$ (see (8), Theorem 1) is invertible in the space of continuous functions and yet H changes sign. In fact we show that this is the case for $H(t, x) = \sin(3x)$, and explicitly calculate L^{-1} . This and Theorem 2 prove that our results properly include those of [1].

Let

$$H(t,x) = \sum_{j=1,l=0}^{\infty,\infty} (a_{jl}\sin(jx)\sin(lt) + b_{jl}\sin(jx)\cos(lt)),$$

$$p(t) = \sum_{k=1}^{\infty} (c_k\sin(kt) + d_k\cos(kt)).$$
(29)

Elementary calculations show that

$$L(\sin(kr)) = 8 \sum_{j+l \ odd} \left(\frac{ja_{jl}(k^2 - kl)}{(j^2 - l^2)((2k - l)^2 - j^2)} \cos(kr - lr) - \frac{ja_{jl}(k^2 + kl)}{(j^2 - l^2)((2k + l)^2 - j^2)} \cos(kr + lr) + \frac{jb_{jl}(k^2 - kl)}{(j^2 - l^2)((2k - l)^2 - j^2)} \sin(kr - lr) + \frac{jb_{jl}(k^2 + kl)}{(j^2 - l^2)((2k + l)^2 - j^2)} \sin(kr + lr) \right).$$
(30)

Vol. 79 (2011)

Similarly

$$L(\cos(kr)) = 8 \sum_{j+l \ odd} \left(\frac{jb_{jl}(k^2 - kl)}{(j^2 - l^2)((2k - l)^2 - j^2)} \cos(kr - lr) + \frac{jb_{jl}(k^2 + kl)}{(j^2 - l^2)((2k + l)^2 - j^2)} \cos(kr + lr) - \frac{ja_{jl}(k^2 - kl)}{(j^2 - l^2)((2k - l)^2 - j^2)} \sin(kr - lr) + \frac{ja_{jl}(k^2 + kl)}{(j^2 - l^2)((2k + l)^2 - j^2)} \sin(kr + lr) \right).$$
(31)

In particular, if $H(t, x) = \sin(3x)$

$$L(\sin(kr)) = \frac{16k^2}{3(4k^2 - 9)}\sin(kr)$$
(32)

and

$$L(\cos(kr)) = \frac{16k^2}{3(4k^2 - 9)}\cos(kr).$$
(33)

Hence, for $H(t, x) = \sin(3x)$

$$L(p(t)) = L\left(\sum_{k=1}^{\infty} (c_k \sin(kt) + d_k \cos(kt))\right)$$

= $\sum_{k=1}^{\infty} \frac{16k^2}{3(4k^2 - 9)} (c_k \sin(kt) + d_k \cos(kt))$
= $\frac{16}{3} \sum_{k=1}^{\infty} \left(1 + \frac{9/4}{k^2 - 9/4}\right) (c_k \sin(kt) + d_k \cos(kt)).$ (34)

Clearly we have that if $p \in C[0, 2\pi]$, then $p \in L^2[0, 2\pi]$ and, by (34), $L(p(t)) \in L^2[0, 2\pi]$. Now see us that L(p(t)) is continuous in $[0, 2\pi]$. Fom (34) we have

$$L(p(t)) = \frac{16\pi}{3}p(t) + \frac{16}{3}\sum_{k=1}^{\infty} \frac{9/4}{k^2 - 9/4}c_k \sin(kt) + \frac{16}{3}\sum_{k=1}^{\infty} \frac{9/4}{k^2 - 9/4}d_k \cos(kt)$$

$$\equiv \frac{16}{3}(p(t) + S_1(t) + S_2(t)).$$
(35)

Let now $t_n \to t$. Thus

$$|S_{1}(t_{n}) - S_{1}(t)| \leq \sum_{k=1}^{\infty} \frac{9/4}{|k^{2} - 9/4|} |c_{k}|| \sin(kt_{n}) - \sin(kt)|$$

$$\leq \frac{9}{4} \sum_{k=1}^{\infty} \frac{k}{|k^{2} - 9/4|} |c_{k}|| \cos(\zeta) ||t_{n} - t|$$

$$\leq 9 \sum_{k=1}^{\infty} \frac{1}{k} |c_{k}||t_{n} - t|$$

$$\leq 9 \left(\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)^{1/2} \left(\sum_{k=1}^{\infty} (c_{k})^{2}\right)^{1/2} |t_{n} - t|$$

$$\leq c |t_{n} - t|,$$
(36)

where the constant c is independent of t and t_n . Hence S_1 is a continuous function. Similarly, S_2 is also a continuous function. Hence, by (35) and (36), $L(p) \in C[0, 2\pi]$ if $p \in C[0, 2\pi]$.

Furthermore for all k positive integer, $1 + \frac{9/4}{k^2 - 9/4} \neq 0$ and

$$p(t) = \sum_{k=1}^{\infty} (c_k \sin(kt) + d_k \cos(kt))$$

= $\sum_{k=1}^{\infty} \left(1 - \frac{9}{4k^2}\right) \left(1 + \frac{9/4}{k^2 - 9/4}\right) (c_k \sin(kt) + d_k \cos(kt)).$ (37)

Therefore, following the arguments in (34), (35) and (36) we have that the operator $L^{-1}: C[0, 2\pi] \to C[0, 2\pi]$ defined by

$$L^{-1}(q(t)) = \frac{3}{16\pi} \sum_{k=1}^{\infty} \left(1 - \frac{9}{4k^2} \right) \left(f_k \sin(kt) + g_k \cos(kt) \right)$$
(38)

is the inverse of L. Here $\sum_{k=1}^{\infty} (f_k \sin(kt) + g_k \cos(kt))$ is the Fourier series of q(t). So, by Theorem 1, there exists $\epsilon_0 > 0$ such that for $\epsilon \in (0, \epsilon_0)$ the equation (7) has solution $u \in C^0(\Omega)$.

Lemma 1. If $h(t, x) = 9\sin(3x)$ and $H = \Box^{-1}(h) + v$, with $v \in N$, then H changes sign.

Proof. By the definition of H, $H(t,x) = \sin 3x + v(t,x)$ with v(t,x) = p(t+x) - p(t-x) (see (3)). Assuming that H(t,x) > 0 for all $x \in (0,\pi)$, $t \in [0,2\pi]$, we have that $H(t,\pi/2) = -1 + p(t+\pi/2) - p(t-\pi/2) > 0$. Hence

$$\int_{0}^{2\pi} p(\pi/2+t)dt > \int_{0}^{2\pi} (1+p(t-\pi/2))dt$$

$$= 2\pi + \int_{0}^{2\pi} p(t-\pi/2)dt.$$
(39)

Since p is 2π -periodic and $\int_0^{2\pi} p(t)dt = 0$, (39) is a contradiction. On the other hand, if we assume that H(t, x) < 0 for all $x \in (0, \pi)$, $t \in [0, 2\pi]$, taking $x = \pi/6$ we also reach a contradiction. Hence H changes sign.

Taking $h(t,x) = 9\sin(3x)$ and $H(t,x) = \sin(3x)$, by (38) and Theorem 1, the equation (1) has a solution for ϵ small. On the other hand, by Lemma 1, Theorem 1 of [1] does not apply because neither h nor H are of one sign. These arguments easily extend to any function h(t,x) of the form $\sin(kx)$ with k odd and positive. This provides a large class of examples for which Theorem 1 applies but not Theorem 1 of [1].

Since the set of invertible of operators in a Banach space is open in the algebra of such operators, if $H_1(t, x)$ is small then $L + L_{H_1}$ is also invertible. Thus we have:

Theorem 3. There exists $\delta > 0$ such that if $||h_1|| \leq \delta$ then there exists $\epsilon_0 > 0$ such that for $\epsilon \in (0, \epsilon_0)$, $h(t, x) = 9\sin(3x) + h_1(t, x) \in N^{\perp}$, and k = 1 the equation (1) has a solution. Moreover, every solution to $\Box H = h$ satisfying the boundary condition in (1) changes sign.

6. Appendix

The purpose of this appendix is to establish the existence of $\hat{v} = \epsilon V$ as used in the proof of the case k > 1 in Theorem 1 when H is positive (see Lemma 3 below.)

Lemma 2. There exists Δ such that for any $v \in N \cap L^{2k}(\Omega)$

$$\int_{\Omega} v^{2k}(t,x) d\sigma \le \Delta \int_{\Omega_1} v^{2k}(t,x) d\sigma,$$
(40)

where $\Omega_1 = \{(t, x); |x - \pi/2| \le \pi/4, t \in [0, 2\pi]\}.$

Proof. For $v \in N \cap L^{2k}(\Omega)$, let

$$A = \{ x \in [\pi/4, 3\pi/4]; \int_0^{2\pi} v^{2k}(t, x) dt \ge \frac{20}{\pi} \int_{\Omega_1} v^{2k}(t, x) d\sigma \}.$$
(41)

By Fubini's Theorem $m(A) \leq \pi/20$. Let $B = [\pi/4, 3\pi/4] - A$. Hence

$$m(B) \ge 9\pi/20,$$

$$m([\pi/4, \pi/2] \cap B) \ge m(B) - m([\pi/2, 3\pi/4])$$

$$\ge \pi/5,$$

$$m([\pi/2, 3\pi/4] \cap B) \ge \pi/5.$$
(42)

Assuming that there is $x \in [0, \pi/4)$ such that, for all $z \in B \cap [\pi/2, 3\pi/4]$, $z - x \notin B$ we see that $B_1 = \{z - x; z \in B \cap [\pi/2, 3\pi]/4\} \subset A$. Hence $m(A) \ge m(B_1) \ge \pi/5$ which contradicts that $m(A) \le \pi/20$. Thus for all $x \in [0, \pi/4)$, there exists $z \in B \cap [\pi/2, 3\pi/4]$ such that $z - x \in B$. Now for $t \in [0, 2\pi]$, $x \in [0, \pi/4)$ we have

Vol. 79 (2011)

$$|v^{2k}(t,x)| = |v(t-z,z-x) + v(t-x,0) - v(t+x-z,z)|^{2k}$$

$$\leq |v(t-z,z-x) - v(t-x-z,z)|^{2k}$$

$$\leq 2^{2k-1}(v^{2k}(t-z,z-x) + v^{2k}(t-x-z,z)).$$
(43)

Thus

$$\int_{0}^{2\pi} v^{2k}(t,x)dt \le 2^{2k-1} \left(\int_{0}^{2\pi} v^{2k}(t,z-x)dt + \int_{0}^{2\pi} v^{2k}(t,z)dt \right) \\ \le 2^{2k} \frac{20}{\pi} \int_{\Omega_{1}} v^{2k}(t,x)d\sigma.$$
(44)

Similarly, for all $x \in (3\pi/4, \pi]$,

$$\int_{0}^{2\pi} v^{2k}(t,x)dt \le 2^{2k} \frac{20}{\pi} \int_{\Omega_1} v^{2k}(t,x)d\sigma.$$
(45)

Consequently, by Fubini's theorem, (44), and (45)

$$\int_{\Omega} v^{2k}(t,x) d\sigma = \int_{0}^{\pi/4} \int_{0}^{2\pi} v^{2k}(t,x) dt dx + \int_{\Omega_{1}} v^{2k}(t,x) d\sigma + \int_{3\pi/4}^{\pi} \int_{0}^{2\pi} v^{2k}(t,x) dt dx \leq \left(1 + 5 \cdot 2^{2k+1}\right) \int_{\Omega_{1}} v^{2k}(t,x) d\sigma \equiv \Delta \int_{\Omega_{1}} v^{2k}(t,x) d\sigma,$$

$$(46)$$

which proves Lemma (2).

Lemma 3. If H is continuous and positive in $\mathbb{R} \times (0, \pi)$ then there exists $V \in N \cap L_{\infty}$ such that $\prod_{N} (V + H)^{2k} = 0$.

Proof. Let

$$g(s,t,x) = (s + H(t,x))^{2k+1} - s^{2k+1}$$

= $\sum_{j=1}^{2k+1} \frac{(2k+1)!}{(2k+1-j)!j!} s^{2k+1-j} H^j(t,x).$ (47)

As long as $H(t,x) \geq 0$, g is a convex function of its first variable. Hence $f(v) = \int_{\Omega} g(v(t,x),t,x) d\sigma$ defines a convex functional on $N \cap L^{2k}(\Omega)$. By the continuity of of H, there exists a positive constant C such that $H(t,x) \geq C$ for all $(t,x) \in \Omega_1$. This and Lemma 2 imply that $\lim_{\|v\|_{2k}\to\infty} f(v) = +\infty$. Therefore there exists $V \in N \cap L^{2k}(\Omega)$ such that $f(V) = \min\{f(v); v \in N \cap L^{2k}(\Omega)\}$ (see [10], Theorem 7.3.4).

Let us see that V is in $L^{\infty}(\Omega)$. Let $p : \mathbb{R} \to \mathbb{R}$ be a 2π -periodic function such that V(t,x) = p(t+x) - p(t-x). Let φ be as in (15). Since $\varphi \in N \cap L^{2k}(\Omega)$ and $V^{2k} \in N^{\perp}, 0 = \int_{\Omega} \varphi(V+H)^{2k} d\sigma = \int_{\Omega} \varphi((V+H)^{2k} - V^{2k}) d\sigma$ (see Lemma 2.4 in [1]).

Arguing as in (17)-(18) we have

$$0 = \int_{0}^{\pi} (V+H)^{2k} (r+x,x) dx - \int_{0}^{\pi} (V+H)^{2k} (r-x,x) dx$$

$$= \int_{0}^{\pi} \sum_{j=1}^{2k} \frac{(2k)!}{(2k+1-j)!j!} (p(r+2x) - p(r))^{2k-j} H^{j} (r+x,x) dx$$

$$- \int_{0}^{\pi} \sum_{j=1}^{2k} \frac{(2k)!}{(2k+1-j)!j!} (p(r) - p(r-2x))^{2k-j} H^{j} (r-x,x) dx \qquad (48)$$

$$= -2kp^{2k-1} (r) \left(\int_{0}^{\pi} (H(r+x,x) + H(r-x,x)) dx \right)$$

$$+ \sum_{j=2}^{2k} p^{2k-j} (r) q_{j} (r),$$

where the q_j 's are bounded periodic functions. Since also we are assuming H to be continuous and positive, there exists a positive constant c such that $\int_0^{\pi} (H(r+x,x) + H(r-x,x)) dx \ge c$ for all $r \in [0, 2\pi]$. This and (48) imply that $p \in L^{\infty}(\mathbb{R})$. Hence $V \in L^{\infty}(\mathbb{R})$, which proves Lemma 3.

References

- Berti, M. and Biasco, L. Forced vibrations of wave equations with non-monotone nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linaire, 23 (2006), no. 4, 439–474.
- [2] Brézis, H. and Nirenberg, L., Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1-30.
- [3] Brézis, H. and Nirenberg, L., Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Sc. Norm. Sup. di Pisa, (1978), 225-326.
- [4] Caicedo, J. F. and Castro, A. A semilinear wave equation with derivate of nonlinearity containing multiple eigenvalues of infinite multiplicity, Contemporary Math., 208 (1997),111-132.
- [5] Caicedo, J. F. and Castro, A., A semilinear wave equation with smooth data and no resonance having no continuous solution, Disc. and Cont. Dynamical Systems, 24 (2009), 653-658.
- [6] Castro, A. and Preskill B., Existence of solutions for a semilinear wave equation with non-monotone nonlinearity, Continuous and Discrete Dynamical Systems, Series A, Vol. 28, No. 2, (2010), 649-658.
- [7] Castro, A. and Unsurangsie S., A semilinear wave equation with nonmonotone nonlinearity, Pacific Jour. of Math., 132 (1988), 215-225.
- [8] Coron, J. M. Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (1983), no. 2, 273285.
- Hofer, H., On the range of a wave operator with nonmonotone nonlinearity, Math. Nachr., 106 (1980), 327-340.

- [10] Kurdila, A. and Zabarankin, M., Convex functional analysis, Volume 1, Birkhauser.
- [11] Lovicarová, H., Periodic solutions of a weakly wave equation in one dimension, Czech. Math. Jour., 19 (1969), 324-342.
- [12] Rabinowitz, P.H., Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure Appl. Math. 37 (1984), no. 2, 189–206.
- [13] Willem, M., Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (1981), no. 2, 341–344.

José F. Caicedo Departamento de Matemáticas Universidad Nacional de Colombia Bogotá Colombia e-mail: jfcaicedoc@unal.edu.co Alfonso Castro Department of Mathematics Harvey Mudd College Claremont, CA 91711 USA e-mail: castro@math.hmc.edu

Rodrigo Duque Departamento de Matemáticas Universidad Nacional de Colombia Bogotá Colombia e-mail: rduqueba@unal.edu.co

Received: December 12, 2010.