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Existence of Solutions for a Wave Equation
with Non-monotone Nonlinearity and a
Small Parameter

José F. Caicedo, Alfonso Castro and Rodrigo Duque∗

Abstract. We provide sufficient conditions for the existence of solutions to a semi-
linear wave equation with non-monotone nonlinearity involving a small param-
eter. Our results are based on the analysis of a an operator that characterizes
the projection onto the kernel of the wave operator subject to periodic-Dirichlet

boundary conditions. Such a kernel is infinite dimensional which makes standard
compactness arguments inapplicable.

Mathematics Subject Classification (2010). Primary 35L75; Secondary 34B15.
Keywords. Semilinear wave equation, characteristic line, infinite dimensional ker-
nel.

1. Introduction

Based on the results of [1] and the methods introduced in [6], we study the equation⎧⎪⎨
⎪⎩
�u = ε(u2k + h(t, x) + R(t, x, u))
u(t, 0) = u(t, π) = 0
u(t, x) = u(t + 2π, x)

(1)

where � = ∂tt − ∂xx denotes the D’Alembert operator, k is a positive integer,
t ∈ R, x ∈ [0, π] and R ∈ C0(R × [0, π] × R) is 2π-periodic in its first variable. We
assume that R is differentiable in its third variable, and that

R(t, x, 0) = 0 and lim
u→0

Ru(t, x, u)
u2k−1 = 0, (2)

uniformly for (t, x) ∈ R× [0, π].

The key feature of equation (1) is that, regardless of the size of ε, the derivative
of the nonlinearity includes the eigenvalue 0 which has infinite multiplicity (see (3)
below) making compactness arguments not applicable. All the results of this paper
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extend to the case where, in (1), u2k is replaced by β(x)u2k with β a positive con-
tinuous function such β(x) = β(π−x). For the sake of simplicity in the presentation
we restrict ourselves to the case β(x) ≡ 1.

Throughout this paper all functions are 2π-periodic in the variable t.

The kernel of � subject to the boundary conditions in (1) is

N = {v(t, x) = p(t + x)− p(t− x); p ∈ L2([0, 2π]),
∫ 2π

0
p(s)ds = 0}

= {v(t, x) = p(t + x)− p(t− x); p ∈ L2([0, 2π])}.
(3)

Let Ω = [0, 2π]× [0, π],

N⊥ = {w : R× [0, π] → R;w ∈ L2(Ω),
∫

Ω
wv = 0 ∀v ∈ N},

H1 = {w : R× [0, π] → R;w,wt, wx ∈ L2(Ω), w(t, 0) = w(t, π) = 0},
(4)

For 1 ≤ p < ∞, the norm in Lp(Ω) will be denoted by ‖ · ‖p; the norms in L∞ and
C0 will simply be denoted by ‖ · ‖. The norm in the space H1 will be denoted by
‖ · ‖1,2 and is defined as

‖w‖1,2 =
(∫

Ω
(w2

t (t, x) + w2
x(t, x))dtdx

)1/2

. (5)

An elementary argument based on Fourier expansions shows that for each f ∈ N⊥

there exists a unique w ∈ H1∩N⊥ such that �(w) = f in the sense of distributions.
Moreover, the transformation f → w ≡ �−1(f) is continuous as an operator from
L2(Ω)∩N⊥ into H1 ∩N⊥, from L2(Ω)∩N⊥ into L∞ ∩N⊥, and from L∞(Ω)∩N⊥

into C0,1 ∩N⊥. Thus there exists a constant c0 such that

‖�−1f‖1,2 ≤ c0‖f‖2, ‖�−1f‖∞ ≤ c0‖f‖2, and ‖�−1f‖C0,1 ≤ c0‖f‖∞, (6)

see [1], (2.3).
For the rest of this paper h ∈ N⊥. Letting H = �−1(h) + v, with v ∈ N ,

subtracting �(εH) = εh from both sides of the first equation in (1) and replacing
u− εH by u that equation becomes

�u = ε(u + εH)2k + εR(t, x, u + εH), (7)

subject to the the boundary conditions in (1).
We establish the solvability of (7) in terms of the operator LJ : C0((0, 2π)) →

C0((0, 2π)) defined by

(LJ(p))(r) = p(r)
∫ π

0
{J(r + x, x) + J(r − x, x)}dx

−
∫ π

0
{p(r + 2x)J(r + x, x) + p(r − 2x)J(r − x, x)}dx

(8)

where p(t + x)− p(t− x) = v(t, x) ∈ N, r ∈ [0, 2π].
In fact, our main result is:
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Theorem 1. Suppose (2) is satisfied and let ΠN denote the L2(Ω)-orthogonal projec-
tion onto N . If

a) k = 1 and LH is invertible, or
b) k > 1, and there exists v̂ ∈ N such that ‖v̂‖ ≤ O(ε), ΠN (v̂ + εH)2k = 0 and LJ

is invertible for J = (v̂ + εH)2k−1 − v̂2k−1 with ε1−2k‖LJ‖ bounded away from
zero,

then there exist ε0 > 0 such that for ε ∈ (0, ε0) the equation (7) has a solution
u ∈ C0(Ω).

Our next result shows that Theorem 1 includes the existence results in [1]. In
fact, we have:

Theorem 2. If, for some v ∈ N , H is continuous and H(t, x) > 0 for all (t, x) ∈ Ω,
then LH is invertible. If, in addition, k > 1 then there exists v̂ ∈ N satisfying part
b) in Theorem 1. Hence there exist ε0 > 0 such that for ε ∈ (0, ε0) the equation (7)
has a solution u ∈ C0(Ω).

The positivity of H is not a necessary condition for the invertivility of LH . For
example if h(t, x) = 9 sin(3x) + h1(t, x) with h1 small enough then H = �−1h + v
changes sign for any v ∈ N and yet LH is invertible. This is a case where Theorem
1 applies but not the results of [1]. See Theorem 3 in Section 5 below.

The operator LH was introduced in [5] to prove the nonexistence of continuous
solutions to

�u = g(u) + λu + h(t, x), u(t, x) = u(t + 2π, x) = u(t, x + 2π) (9)

when λ is not an eigenvalue of � subject to the periodicity condition in (9), g has
compact support, λu+ g(u) is not monotone, and h is a large multiple of sin(t+ x).
The operator LH was also used in [6] to prove the existence of solutions to (9) when
h does not vanish on sets of positive measure in any characteristic line. For results
on (9) the reader is referred to [2, 3, 12], for the other studies on the non-monotone
case see [4, 9, 13].

Following the results in [8], if the functions h and R satisfy the symmetry
h(t, x) = h(t + π, π − x), R(t, x, u) = R(t + π, π − x, u) then one may restrict the
study of equation (1) to spaces of functions u with this symmetry. Since no non-zero
element in N satisfies this symmetry, ΠN ((u+ εH)2k +R(t, x, u+ εH)) = 0 for any
u satisfying the symmetry (see (10) below). This reduces the solvability of (1) to
the solvability of the range equation (11) which is easily solved for ε small under no
additional hypothesis on h, see Section 2.

The solutions given by Theorem 1 satisfy ‖u‖ ≤ O(ε). This cannot happen if
h �∈ N⊥, see [1], Remark 1.1. Thus the assumption h ∈ N⊥ is necessary. If H > 0
and smooth the solutions to (1) are smooth (see [1], Theorem 2.) The regularity of
the solutions here obtained for H changing sign is yet to be studied.
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2. Solvability in N⊥

Let V = N ∩ C0(Ω), W = N⊥ ∩ C0(Ω) and ΠN , ΠN⊥ the orthogonal projections
from L2(Ω) onto N and N⊥, respectively.

Setting u = v + w with v ∈ V and w ∈ W , the problem (7) is equivalent to
solving the kernel and the range equations

ΠN ((v + w + εH)2k + R(t, x, v + w + εH)) = 0, (10)

ε�−1ΠN⊥((v + w + εH)2k + R(t, x, v + w + εH)) = w. (11)

In order to solve the kernel equation, (10), we will follow the methods introduced in
[5, 6]. The following proposition summarizes the solvability of the range equation,
(11). We omit its proof as, up to minor details, it is given by the proof of Proposition
3.2 of [1].

Proposition 1. There exist ε̂ > 0 and δ0 > 0 such that if v ∈ V with ‖v‖C0 ≤ δ0 and
|ε| < ε̂ then (11) has a unique solution w(v, ε) ∈ N⊥. Moreover there exists α > 0
such that

‖w(v, ε)‖ ≤ α|ε|(‖v‖2k + |ε|2k) and ‖w(v1, ε)− w(v2, ε)‖ ≤ |ε|α‖v1 − v2‖, (12)

for all v, v1, v2 with ‖v‖, ‖v1‖, ‖v2‖ ≤ δ0, and |ε| ≤ ε̂.

3. Proof of Theorem 1

We prove in detail the case k > 1; the case k = 1 follows the same pattern with
v̂ = 0 making the calculations a lot simpler.

Let v̂ be as in part b) of Theorem 1, and v = v̂+ζ. Since the product of an even
number of elements in N is in N⊥, ΠN (v̂2k−1ζ) = 0 (see [1, Lemma 2.4]). Therefore
(10) is equivalent to

0 = ΠN

(
−2kv̂2k−1ζ + (v̂ + εH)2k + 2k(v̂ + εH)2k−1ζ + 2k(v̂ + εH)2k−1w

+
2k∑
j=2

Cj(v̂ + εH)2k−j(ζ + w)j + R(t, x, v̂ + ζ + w + εH)
)

= ΠN

(
2kJζ + 2k(v̂ + εH)2k−1w +

2k∑
j=2

Cj(v̂ + εH)2k−j(ζ + w)j

+ R(t, x, v̂ + ζ + w + εH)
)

≡ ΠN

(
2kJζ + Q(ζ, ε,H)

)
,

(13)

where Cj is the binomial coefficient 2k choose j, and J = (v̂ + εH)2k−1 − v̂2k−1.

Let z : R→ R be a 2π-periodic function such that ζ(t, x) = z(t + x)− z(t− x)
with

∫ 2π
0 z(s)ds = 0.
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As in [6], for 0 ≤ r ≤ s ≤ 2π let χ[r,s] be the 2π-periodic function such that

χ[r,s](t) =

{
1, t ∈ [r, s]
0, t ∈ [0, 2π]− [r, s]

(14)

and let φ be the function defined by

φ(t, x) = χ[r,s](t + x)− χ[r,s](t− x) ∈ N (15)

Also we let

A = {(t, x) ∈ Ω; x ∈ [0, π], t ∈
⋃
j

[r + 2jπ − x, s + 2jπ − x],

j = 0, 1}
B = {(t, x) ∈ Ω; x ∈ [0, π], t ∈

⋃
j

[r + 2jπ + x, s + 2jπ + x],

j = −1, 0}.

(16)

From now on, for the sake of simplicity in the notations, we write dtdx = dσ.
Multiplying ζJ by φ and integrating on Ω we obtain∫

Ω
ζJφdσ =

∫
Ω
z(t + x)J(t, x)φ(t, x)dσ −

∫
Ω
z(t− x)J(t, x)φ(t, x)dσ

=
∫
B
z(t + x)J(t, x)dσ −

∫
A
z(t + x)J(t, x)dσ

−
∫
B
z(t− x)J(t, x)dσ +

∫
A
z(t− x)J(t, x)dσ

=
∫ π

0

∫ s

r

(
z(η)J(η − x, x)− z(η + 2x)J(η + x, x)

)
dηdx

−
∫ π

0

∫ s

r

(
z(η − 2x)J(η − x, x)− z(η)J(η + x, x)

)
dηdx.

(17)

By the Lebesgue differentiation theorem (see (49) in [2]), for almost every r ∈ [0, 2π],

lim
s→r

1
s− r

∫
Ω
ζJφdσ =

∫ π

0
(z(r)− z(r − 2x))J(r − x, x)dx

+
∫ π

0
(z(r)− z(r + 2x))J(r + x, x)dx

= [LJ(z)](r).

(18)

Similarly, multiplying Q(ζ, ε,H) by φ, integrating on Ω, dividing by s−r, and taking
limit as s tend to r we have

lim
s→r

1
s− r

∫
Ω
Q(ζ, ε,H)φdσ =

∫ π

0
Q(ζ, ε,H)(r − x, x)dx

+
∫ π

0
Q(ζ, ε,H)(r + x, x))dx

≡ [Γ(z)](r).

(19)
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Hence if v = v̂+ζ and w = w(v, ε) satisfies (10) then 2kLJ(z) = Γ(z) (see Proposition
1). Conversely, if z satisfies z = (1/(2k))L−1

J Γ(z) ≡ Γ1(z) then v + w(v, ε) satisfies
(10) (see [6, Lemma 1.3].) Therefore v + w(v, ε) solves (1).

Let M > 0 be such that ‖v̂‖+ ε‖H‖ ≤Mε for all ε ∈ (0, ε̂). Due to assumption
b), by further restricting ε̂ if needed, there exists m > 0 such that ε2k−1‖L−1‖ ≤ m
for all ε ∈ (0, ε̂). Since k > 1, there exist ε3 ∈ (0, ε̂) and τ > 0 be such that

2kM2k−1αμε2k3 +
2k∑
j=2

Dj(2τ + αμε2k3 )j ≤ τ

4π
,

m

⎛
⎝2kαM2k−1ε3 +

2k∑
j=2

jDj(2τ + αε2k3 μ)j−1

⎞
⎠ ≤ 1

8π
,

(20)

where Dj = CjM
2k−j and μ = (M + 2τ)2k + 1. Next we choose γ > 0 be such that

4πγ < min
{

τ

(M + 2τ + αε2k3 μ)2k
,

1
2m(1 + αε3)(2τ + M + αμε2k3 )2k−1

}
. (21)

By (2), there exists δ > 0 such that if |s| < δ then |R(t, x, s)| < γs2k and
|Ru(t, x, s)| ≤ γ|s|2k−1. Finally we take ε4 ∈ (0, ε3) such that

ε4(2M + 2τ + αε2k4 ) < δ. (22)

Now for ‖z‖ ≤ τε we have ‖ζ‖ ≤ 2τε, and ‖w(v̂ + ζ, ε)‖ ≤ α(M + 2τ)2kε2k+1.
Therefore

‖Q(ζ, ε,H)‖ ≤ 2k‖(v̂ + εH)2k−1w‖+
2k∑
j=2

Cj(Mε)2k−j‖ζ + w‖j

+ ‖R(t, x, v̂ + ζ + w + εH)‖
≤ 2kM2k−1α(M + 2τ)2kε4k

+
2k∑
j=2

Djε
2k−j(2τε + α(M + 2τ)2kε2k+1)j

+ γ‖v̂ + ζ + w + εH)‖2k
≤ ε2k

(
2kM2k−1α(M + 2τ)2kε2k

2k∑
j=2

Dj(2τ + α(M + 2τ)2kε2k)j

+ γ(M + 2τ + αμε2k)
)

≤ τε2k.

(23)
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Let ζi(t, x) = zi(t + x)− zi(t− x) for i = 1, 2, and wi = w(v̂ + ζi, ε) with ‖zi‖ ≤ τε.
Thus, from the definition of Q, Proposition 1, (20), (21) and (22), we have

‖Q(ζ1,ε,H)−Q(ζ2, ε,H)‖ ≤ 2k‖(v̂ + εH)2k−1‖‖w1 − w2‖

+
2k∑
j=2

Cj(Mε)2k−j‖(ζ1 + w1)j − (ζ2 + w2)j‖

+ ‖R(t, x, v̂ + ζ1 + w1 + εH)−R(t, x, v̂ + ζ2 + w2 + εH)‖
≤ 2k(Mε)2k−1αε‖ζ1 − ζ2‖

+
( 2k∑
j=2

Djε
2k−j(1 + εα)

j−1∑
i=0

‖(ζ1 + w1)j−1−i(ζ2 + w2)i‖

+ γ(2M + 1 + α)2k−1ε2k−1
)
‖ζ1 − ζ2‖

≤ ε2k−1
( 2k∑
j=2

Dj(1 + εα)j(2τ + αμε2k)j−1

+ 2kM2k−1αε + γ(1 + αε)(2τ + M + αμε2k)2k−1
)
‖ζ1 − ζ2‖

≤ 1
2‖L−1

J ‖
‖ζ1 − ζ2‖.

(24)

From (23) we see that (ε1−2k/(2k))L−1
J Γ transforms the metric space {z; ‖z‖ ≤ τε}

into itself. Also (24) proves that (ε1−2k/(2k))L−1
J Γ is a contraction. Hence it has a

unique fixed point which proves Theorem 1.

4. Proof of Theorem 2

Let

X2 =
{
p ∈ C0(R); p(x) = p(x + 2π),

∫ 2π

0
p(s)ds = 0, ‖p‖C0 = 1

}
For each p ∈ X2, let rp ∈ [0, 2π] be such that |p(rp)| = 1. We claim that

inf
p∈X2

|LH(p)(rp)| > 0. (25)

Let us assume that there exists a sequence {pn} in X2 such that|LH(pn)(rpn)| < 1/n.
Without loss of generality we may assume that pn(rpn) = 1. Hence

1
n
≥ LH(pn)(rpn)

=
∫ π

0
(1− pn(rpn − 2x))H(rpn − x, x)dx

+
∫ π

0
(1− pn(rpn + 2x))H(rpn + x, x)dx

≥
∫ π

0
(1− pn(rpn − 2x))H(rpn − x, x)dx.

(26)
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Therefore

{
√

(1− pn(rpn + 2x))H(rpn + x, x)} → 0, in L2. (27)

Hence there exists a subsequence
{
pnk

}
of {pn} such that

{
(1− pnk

(rpnk
+ 2x))H(rpnk

+ x, x)
}→ 0 (28)

almost everywhere on [0, π]. Since H(t, x) > 0, ∀(t, x) ∈ Ω, then the sequence
{pnk

} → 1 a.e. [0, 2π]. But this is a contradiction, because
∫ 2π
0 pnk

(s)ds = 0 for all
k. Hence (25) is proven, which proves that LH is invertible. Thus the first statement
in Theorem 2 is proven.

In order to prove the second statement in Theorem 2 we define v̂ = εV , with
V as given by Lemma 3. Since (v̂ + εH)2k−1 − v̂2k−1 ≥ 2((εH)/2)2k−1 the second
stament in Theorem 2 is proven. The third statement in Theorem 2 follows from
Theorem 1, which completes the proof of Theorem 2.

5. Examples of invertivility of L when H changes sign

In this section we make use of Fourier expansions to provide examples in which
LH ≡ L (see (8), Theorem 1) is invertible in the space of continuous functions and
yet H changes sign. In fact we show that this is the case for H(t, x) = sin(3x),
and explicitely calculate L−1. This and Theorem 2 prove that our results properly
include those of [1].

Let

H(t, x) =
∞,∞∑

j=1,l=0

(ajl sin(jx) sin(lt) + bjl sin(jx) cos(lt)),

p(t) =
∞∑
k=1

(ck sin(kt) + dk cos(kt)).

(29)

Elementary calculations show that

L(sin(kr)) = 8
∑

j+l odd

(
jajl(k2 − kl)

(j2 − l2)((2k − l)2 − j2)
cos(kr − lr)

− jajl(k2 + kl)
(j2 − l2)((2k + l)2 − j2)

cos(kr + lr)

+
jbjl(k2 − kl)

(j2 − l2)((2k − l)2 − j2)
sin(kr − lr)

+
jbjl(k2 + kl)

(j2 − l2)((2k + l)2 − j2)
sin(kr + lr)

)
.

(30)
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Similarly

L(cos(kr)) = 8
∑

j+l odd

(
jbjl(k2 − kl)

(j2 − l2)((2k − l)2 − j2)
cos(kr − lr)

+
jbjl(k2 + kl)

(j2 − l2)((2k + l)2 − j2)
cos(kr + lr)

− jajl(k2 − kl)
(j2 − l2)((2k − l)2 − j2)

sin(kr − lr)

+
jajl(k2 + kl)

(j2 − l2)((2k + l)2 − j2)
sin(kr + lr)

)
.

(31)

In particular, if H(t, x) = sin(3x)

L(sin(kr)) =
16k2

3(4k2 − 9)
sin(kr) (32)

and

L(cos(kr)) =
16k2

3(4k2 − 9)
cos(kr). (33)

Hence, for H(t, x) = sin(3x)

L(p(t)) = L

( ∞∑
k=1

(ck sin(kt) + dk cos(kt))

)

=
∞∑
k=1

16k2

3(4k2 − 9)
(ck sin(kt) + dk cos(kt))

=
16
3

∞∑
k=1

(
1 +

9/4
k2 − 9/4

)
(ck sin(kt) + dk cos(kt)).

(34)

Clearly we have that if p ∈ C[0, 2π], then p ∈ L2[0, 2π] and, by (34), L(p(t)) ∈
L2[0, 2π]. Now see us that L(p(t)) is continuous in [0, 2π]. Fom (34) we have

L(p(t)) =
16π
3

p(t) +
16
3

∞∑
k=1

9/4
k2 − 9/4

ck sin(kt)

+
16
3

∞∑
k=1

9/4
k2 − 9/4

dk cos(kt)

≡ 16
3

(p(t) + S1(t) + S2(t)).

(35)
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Let now tn → t. Thus

|S1(tn)− S1(t)| ≤
∞∑
k=1

9/4
|k2 − 9/4| |ck|| sin(ktn)− sin(kt)|

≤ 9
4

∞∑
k=1

k

|k2 − 9/4| |ck|| cos(ζ)||tn − t|

≤ 9
∞∑
k=1

1
k
|ck||tn − t|

≤ 9

( ∞∑
k=1

1
k2

)1/2 ( ∞∑
k=1

(ck)2
)1/2

|tn − t|

≤ c|tn − t|,

(36)

where the constant c is independent of t and tn. Hence S1 is a continuous function.
Similarly, S2 is also a continuous function. Hence, by (35) and (36), L(p) ∈ C[0, 2π]
if p ∈ C[0, 2π].

Furthermore for all k positive integer, 1 + 9/4
k2−9/4 �= 0 and

p(t) =
∞∑
k=1

(ck sin(kt) + dk cos(kt))

=
∞∑
k=1

(
1− 9

4k2

)(
1 +

9/4
k2 − 9/4

)
(ck sin(kt) + dk cos(kt)).

(37)

Therefore, following the arguments in (34), (35) and (36) we have that the operator
L−1 : C[0, 2π] → C[0, 2π] defined by

L−1(q(t)) =
3

16π

∞∑
k=1

(
1− 9

4k2

)
(fk sin(kt) + gk cos(kt)) (38)

is the inverse of L. Here
∑∞

k=1 (fk sin(kt) + gk cos(kt)) is the Fourier series of q(t).
So, by Theorem 1, there exists ε0 > 0 such that for ε ∈ (0, ε0) the equation (7) has
solution u ∈ C0(Ω).

Lemma 1. If h(t, x) = 9 sin(3x) and H = �−1(h) + v, with v ∈ N , then H changes
sign.

Proof. By the definition of H, H(t, x) = sin 3x + v(t, x) with v(t, x) = p(t + x) −
p(t − x) (see (3)). Assuming that H(t, x) > 0 for all x ∈ (0, π), t ∈ [0, 2π], we have
that H(t, π/2) = −1 + p(t + π/2)− p(t− π/2) > 0. Hence∫ 2π

0
p(π/2 + t)dt >

∫ 2π

0
(1 + p(t− π/2))dt

= 2π +
∫ 2π

0
p(t− π/2)dt.

(39)
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Since p is 2π-periodic and
∫ 2π
0 p(t)dt = 0, (39) is a contradiction. On the other hand,

if we assume that H(t, x) < 0 for all x ∈ (0, π), t ∈ [0, 2π], taking x = π/6 we also
reach a contradiction. Hence H changes sign. �

Taking h(t, x) = 9 sin(3x) and H(t, x) = sin(3x), by (38) and Theorem 1, the
equation (1) has a solution for ε small. On the other hand, by Lemma 1, Theorem
1 of [1] does not apply because neither h nor H are of one sign. These arguments
easily extend to any function h(t, x) of the form sin(kx) with k odd and positive.
This provides a large class of examples for which Theorem 1 applies but not Theorem
1 of [1].

Since the set of invertible of operators in a Banach space is open in the algebra
of such operators, if H1(t, x) is small then L+LH1 is also invertible. Thus we have:

Theorem 3. There exists δ > 0 such that if ‖h1‖ ≤ δ then there exists ε0 > 0 such
that for ε ∈ (0, ε0), h(t, x) = 9 sin(3x) + h1(t, x) ∈ N⊥, and k = 1 the equation
(1) has a solution. Moreover, every solution to �H = h satisfying the boundary
condition in (1) changes sign.

6. Appendix

The purpose of this appendix is to establish the existence of v̂ = εV as used in the
proof of the case k > 1 in Theorem 1 when H is positive (see Lemma 3 below.)

Lemma 2. There exists Δ such that for any v ∈ N ∩ L2k(Ω)∫
Ω
v2k(t, x)dσ ≤ Δ

∫
Ω1

v2k(t, x)dσ, (40)

where Ω1 = {(t, x); |x− π/2| ≤ π/4, t ∈ [0, 2π]}.
Proof. For v ∈ N ∩ L2k(Ω), let

A = {x ∈ [π/4, 3π/4];
∫ 2π

0
v2k(t, x)dt ≥ 20

π

∫
Ω1

v2k(t, x)dσ}. (41)

By Fubini’s Theorem m(A) ≤ π/20. Let B = [π/4, 3π/4]−A. Hence

m(B) ≥ 9π/20,

m([π/4, π/2] ∩B) ≥ m(B)−m([π/2, 3π/4])

≥ π/5,

m([π/2, 3π/4] ∩B) ≥ π/5.

(42)

Assuming that there is x ∈ [0, π/4) such that, for all z ∈ B ∩ [π/2, 3π/4], z − x �∈ B
we see that B1 = {z − x; z ∈ B ∩ [π/2, 3π]/4} ⊂ A. Hence m(A) ≥ m(B1) ≥ π/5
which contradicts that m(A) ≤ π/20. Thus for all x ∈ [0, π/4), there exists z ∈
B ∩ [π/2, 3π/4] such that z − x ∈ B. Now for t ∈ [0, 2π], x ∈ [0, π/4) we have
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|v2k(t, x)| = |v(t− z, z − x) + v(t− x, 0)− v(t + x− z, z)|2k
≤ |v(t− z, z − x)− v(t− x− z, z)|2k
≤ 22k−1(v2k(t− z, z − x) + v2k(t− x− z, z)).

(43)

Thus ∫ 2π

0
v2k(t, x)dt ≤ 22k−1

(∫ 2π

0
v2k(t, z − x)dt +

∫ 2π

0
v2k(t, z)dt

)

≤ 22k 20
π

∫
Ω1

v2k(t, x)dσ.
(44)

Similarly, for all x ∈ (3π/4, π],∫ 2π

0
v2k(t, x)dt ≤ 22k 20

π

∫
Ω1

v2k(t, x)dσ. (45)

Consequently, by Fubini’s theorem, (44), and (45)∫
Ω
v2k(t, x)dσ =

∫ π/4

0

∫ 2π

0
v2k(t, x)dtdx +

∫
Ω1

v2k(t, x)dσ

+
∫ π

3π/4

∫ 2π

0
v2k(t, x)dtdx

≤
(
1 + 5 · 22k+1

)
)
∫

Ω1

v2k(t, x)dσ

≡ Δ
∫

Ω1

v2k(t, x)dσ,

(46)

which proves Lemma (2). �

Lemma 3. If H is continuous and positive in R× (0, π)then there exists V ∈ N ∩L∞
such that ΠN (V + H)2k = 0.

Proof. Let

g(s, t, x) = (s + H(t, x))2k+1 − s2k+1

=
2k+1∑
j=1

(2k + 1)!
(2k + 1− j)!j!

s2k+1−jHj(t, x).
(47)

As long as H(t, x) ≥ 0, g is a convex function of its first variable. Hence f(v) =∫
Ωg(v(t, x), t, x)dσ defines a convex functional on N ∩ L2k(Ω). By the continuity of

of H, there exists a positive constant C such that H(t, x) ≥ C for all (t, x) ∈ Ω1.
This and Lemma 2 imply that lim‖v‖2k→∞ f(v) = +∞. Therefore there exists V ∈
N ∩L2k(Ω) such that f(V ) = min{f(v); v ∈ N ∩L2k(Ω)} (see [10], Theorem 7.3.4).

Let us see that V is in L∞(Ω). Let p : R → R be a 2π-periodic function such
that V (t, x) = p(t + x) − p(t − x). Let ϕ be as in (15). Since ϕ ∈ N ∩ L2k(Ω) and
V 2k ∈ N⊥, 0 =

∫
Ωϕ(V +H)2kdσ =

∫
Ωϕ((V +H)2k−V 2k)dσ (see Lemma 2.4 in [1]).
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Arguing as in (17)-(18) we have

0 =
∫ π

0
(V + H)2k(r + x, x)dx−

∫ π

0
(V + H)2k(r − x, x)dx

=
∫ π

0

2k∑
j=1

(2k)!
(2k + 1− j)!j!

(p(r + 2x)− p(r))2k−jHj(r + x, x)dx

−
∫ π

0

2k∑
j=1

(2k)!
(2k + 1− j)!j!

(p(r)− p(r − 2x))2k−jHj(r − x, x)dx

= −2kp2k−1(r)
(∫ π

0
(H(r + x, x) + H(r − x, x))dx

)

+
2k∑
j=2

p2k−j(r)qj(r),

(48)

where the qj ’s are bounded periodic functions. Since also we are assuming H to be
continuous and positive, there exists a positive constant c such that

∫ π
0 (H(r+x, x)+

H(r − x, x))dx ≥ c for all r ∈ [0, 2π]. This and (48) imply that p ∈ L∞(R). Hence
V ∈ L∞(R), which proves Lemma 3. �
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