5,734 research outputs found

    Euler-Bernoulli Implementation of Spherical Anemometers for High Wind Speed Calculations via Strain Gauges

    Get PDF
    New measuring methods continue to be developed in the field of wind anemometry for various environments subject to low-speed and high-speed flows, turbulent-present flows, and ideal and non-ideal flows. As a result, anemometry has taken different avenues for these environments from the traditional cup model to sonar, hot-wire, and recent developments with sphere anemometers. Several measurement methods have modeled the air drag force as a quadratic function of the corresponding wind speed. Furthermore, by incorporating non-drag fluid forces in addition to the main drag force, a dynamic set of equations of motion for the deflection and strain of a spherical anemometer's beam can be derived. By utilizing the equations of motion to develop a direct relationship to a measurable parameter, such as strain, an approximation for wind speed based on a measurement is available. These ODE's for the strain model can then be used to relate directly the fluid speed (wind) to the strain along the beam’s length. The spherical anemometer introduced by the German researcher Holling presents the opportunity to incorporate the theoretical cantilevered Euler-Bernoulli beam with a spherical mass tip to develop a deflection and wind relationship driven by cross-area of the spherical mass and constriction of the shaft or the beam's bending properties. The application of Hamilton's principle and separation of variables to the Lagrangian Mechanics of an Euler-Bernoulli beam results in the equations of motion for the deflection of the beam as a second order partial differential equation (PDE). The boundary conditions of our beam's motion are influenced by the applied fluid forces of a relative drag force and the added mass and buoyancy of the sphere. Strain gauges will provide measurements in a practical but non-intrusive method and thus the concept of a measuring strain gauge is simulated. Young's Modulus creates a relationship between deflection and strain of an Euler-Bernoulli system and thus a strain and wind relation can be modeled as an ODE. This theoretical sphere anemometer's second order ODE allows for analysis of the linear and non-linear accuracies of the motion of this dynamic system at conventional high speed conditions

    NLSEmagic: Nonlinear Schr\"odinger Equation Multidimensional Matlab-based GPU-accelerated Integrators using Compact High-order Schemes

    Full text link
    We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schr\"odinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files.Comment: 37 pages, 13 figure

    A data-driven clustering method for time course gene expression data

    Get PDF
    Gene expression over time is, biologically, a continuous process and can thus be represented by a continuous function, i.e. a curve. Individual genes often share similar expression patterns (functional forms). However, the shape of each function, the number of such functions, and the genes that share similar functional forms are typically unknown. Here we introduce an approach that allows direct discovery of related patterns of gene expression and their underlying functions (curves) from data without a priori specification of either cluster number or functional form. Smoothing spline clustering (SSC) models natural properties of gene expression over time, taking into account natural differences in gene expression within a cluster of similarly expressed genes, the effects of experimental measurement error, and missing data. Furthermore, SSC provides a visual summary of each cluster's gene expression function and goodness-of-fit by way of a ‘mean curve’ construct and its associated confidence bands. We apply this method to gene expression data over the life-cycle of Drosophila melanogaster and Caenorhabditis elegans to discover 17 and 16 unique patterns of gene expression in each species, respectively. New and previously described expression patterns in both species are discovered, the majority of which are biologically meaningful and exhibit statistically significant gene function enrichment. Software and source code implementing the algorithm, SSClust, is freely available ()

    Early detection of malaria foci for targeted interventions in endemic southern Zambia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zambia has achieved significant reductions in the burden of malaria through a strategy of "scaling-up" effective interventions. Progress toward ultimate malaria elimination will require sustained prevention coverage and further interruption of transmission through active strategies to identify and treat asymptomatic malaria reservoirs. A surveillance system in Zambia's Southern Province has begun to implement such an approach. An early detection system could be an additional tool to identify foci of elevated incidence for targeted intervention.</p> <p>Methods</p> <p>Based on surveillance data collected weekly from 13 rural health centres (RHCs) divided into three transmission zones, early warning thresholds were created following a technique successfully implemented in Thailand. Alert levels were graphed for all 52 weeks of a year using the mean and 95% confidence interval upper limit of a Poisson distribution of the weekly diagnosed malaria cases for every available week of historic data (beginning in Aug, 2008) at each of the sites within a zone. Annually adjusted population estimates for the RHC catchment areas served as person-time of weekly exposure. The zonal threshold levels were validated against the incidence data from each of the 13 respective RHCs.</p> <p>Results</p> <p>Graphed threshold levels for the three zones generally conformed to observed seasonal incidence patterns. Comparing thresholds with historic weekly incidence values, the overall percentage of aberrant weeks ranged from 1.7% in Mbabala to 36.1% in Kamwanu. For most RHCs, the percentage of weeks above threshold was greater during the high transmission season and during the 2009 year compared to 2010. 39% of weeks breaching alert levels were part of a series of three or more consecutive aberrant weeks.</p> <p>Conclusions</p> <p>The inconsistent sensitivity of the zonal threshold levels impugns the reliability of the alert system. With more years of surveillance data available, individual thresholds for each RHC could be calculated and compared to the technique outlined here. Until then, "aberrant" weeks during low transmission seasons, and during high transmission seasons at sites where the threshold level is less sensitive, could feasibly be followed up for household screening. Communities with disproportionate numbers of aberrant weeks could be reviewed for defaults in the scaling-up intervention coverage.</p

    Induction of antibody responses to African horse sickness virus (AHSV) in ponies after vaccination with recombinant modified vaccinia Ankara (MVA).

    Get PDF
    BACKGROUND: African horse sickness virus (AHSV) causes a non-contagious, infectious disease in equids, with mortality rates that can exceed 90% in susceptible horse populations. AHSV vaccines play a crucial role in the control of the disease; however, there are concerns over the use of polyvalent live attenuated vaccines particularly in areas where AHSV is not endemic. Therefore, it is important to consider alternative approaches for AHSV vaccine development. We have carried out a pilot study to investigate the ability of recombinant modified vaccinia Ankara (MVA) vaccines expressing VP2, VP7 or NS3 genes of AHSV to stimulate immune responses against AHSV antigens in the horse. METHODOLOGY/PRINCIPAL FINDINGS: VP2, VP7 and NS3 genes from AHSV-4/Madrid87 were cloned into the vaccinia transfer vector pSC11 and recombinant MVA viruses generated. Antigen expression or transcription of the AHSV genes from cells infected with the recombinant viruses was confirmed. Pairs of ponies were vaccinated with MVAVP2, MVAVP7 or MVANS3 and both MVA vector and AHSV antigen-specific antibody responses were analysed. Vaccination with MVAVP2 induced a strong AHSV neutralising antibody response (VN titre up to a value of 2). MVAVP7 also induced AHSV antigen-specific responses, detected by western blotting. NS3 specific antibody responses were not detected. CONCLUSIONS: This pilot study demonstrates the immunogenicity of recombinant MVA vectored AHSV vaccines, in particular MVAVP2, and indicates that further work to investigate whether these vaccines would confer protection from lethal AHSV challenge in the horse is justifiable

    Automated detection of parenchymal changes of ischemic stroke in non-contrast computer tomography: a fuzzy approach

    Get PDF
    The detection of ischemic changes is a primary task in the interpretation of brain Computer Tomography (CT) of patients suffering from neurological disorders. Although CT can easily show these lesions, their interpretation may be difficult when the lesion is not easily recognizable. The gold standard for the detection of acute stroke is highly variable and depends on the experience of physicians. This research proposes a new method of automatic detection of parenchymal changes of ischemic stroke in Non-Contrast CT. The method identifies non-pathological cases (94 cases, 40 training, 54 test) based on the analysis of cerebral symmetry. Parenchymal changes in cases with abnormalities (20 cases) are detected by means of a contralateral analysis of brain regions. In order to facilitate the evaluation of abnormal regions, non-pathological tissues in Hounsfield Units were characterized using fuzzy logic techniques. Cases of non-pathological and stroke patients were used to discard/confirm abnormality with a sensitivity (TPR) of 91% and specificity (SPC) of 100%. Abnormal regions were evaluated and the presence of parenchymal changes was detected with a TPR of 96% and SPC of 100%. The presence of parenchymal changes of ischemic stroke was detected by the identification of tissues using fuzzy logic techniques. Because of abnormal regions are identified, the expert can prioritize the examination to a previously delimited region, decreasing the diagnostic time. The identification of tissues allows a better visualization of the region to be evaluated, helping to discard or confirm a stroke.Peer ReviewedPostprint (author's final draft

    Entropic contributions to the splicing process

    Full text link
    It has been recently argued that the depletion attraction may play an important role in different aspects of the cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of the nuclear bodies. In this paper we suggest a new application of these ideas in the context of the splicing process, a crucial step of messanger RNA maturation in Eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of the splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher Eukaryotes can find an evolutionary realistic motivation in the light of our model.Comment: 15 pages, 6 figures. Extended version, accepted for publication in Physical Biolog

    Deciphering the Origin of the Regular Satellites of Gaseous Giants - Iapetus: the Rosetta Ice-Moon

    Full text link
    Here we show that Iapetus can serve to discriminate between satellite formation models. Its accretion history can be understood in terms of a two-component gaseous subnebula, with a relatively dense inner region, and an extended tail out to the location of the irregular satellites, as in the SEMM model of Mosqueira and Estrada (2003a,b). Following giant planet formation, planetesimals in the feeding zone of Jupiter and Saturn become dynamically excited, and undergo a collisional cascade. Ablation and capture of planetesimal fragments crossing the gaseous circumplanetary disks delivers enough collisional rubble to account for the mass budgets of the regular satellites of Jupiter and Saturn. This process can result in rock/ice fractionation provided the make up of the population of disk crossers is non-homogeneous, thus offering a natural explanation for the marked compositional differences between outer solar nebula objects and those that accreted in the subnebulae of the giant planets. Consequently, our model leads to an enhancement of the ice content of Iapetus, and to a lesser degree those of Ganymede, Titan and Callisto, and accounts for the (non-stochastic) compositions of these large, low-porosity outer regular satellites of Jupiter and Saturn. (abridged)Comment: 33 pages, 7 figures, 2 tables, Accepted for publication to Icaru

    A fuzzy approach for feature extraction of brain tissues in Non-Contrast CT

    Get PDF
    In neuroimaging, brain tissue segmentation is a fundamental part of the techniques that seek to automate the detection of pathologies, the quantification of tissues or the evaluation of the progress of a treatment. Because of its wide availability, lower cost than other imaging techniques, fast execution and proven efficacy, Non-contrast Cerebral Computerized Tomography (NCCT) is the most used technique in emergency room for neuroradiology examination, however, most research on brain segmentation focuses on MRI due to the inherent difficulty of brain tissue segmentation in NCCT. In this work, three brain tissues were characterized: white matter, gray matter and cerebrospinal fluid in NCCT images. Feature extraction of these structures was made based on the radiological attenuation index denoted by the Hounsfield Units using fuzzy logic techniques. We evaluated the classification of each tissue in NCCT images and quantified the feature extraction technique in images from real tissues with a sensitivity of 92% and a specificity of 96% for images from cases with slice thickness of 1 mm, and 96% and 98% respectively for those of 1.5 mm, demonstrating the ability of the method as feature extractor of brain tissues.Postprint (published version
    corecore