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ABSTRACT 

 

Euler-Bernoulli Implementation of Spherical Anemometers for High Wind Speed 

Calculations via Strain Gauges. (May 2011) 

Davis Matthew Castillo, B.S., Southern Methodist University 

Chair of Advisory Committee: Dr. John E. Hurtado 

 

New measuring methods continue to be developed in the field of wind 

anemometry for various environments subject to low-speed and high-speed flows, 

turbulent-present flows, and ideal and non-ideal flows. As a result, anemometry has 

taken different avenues for these environments from the traditional cup model to sonar, 

hot-wire, and recent developments with sphere anemometers. Several measurement 

methods have modeled the air drag force as a quadratic function of the corresponding 

wind speed. Furthermore, by incorporating non-drag fluid forces in addition to the main 

drag force, a dynamic set of equations of motion for the deflection and strain of a 

spherical anemometer’s beam can be derived. By utilizing the equations of motion to 

develop a direct relationship to a measurable parameter, such as strain, an approximation 

for wind speed based on a measurement is available. These ODE’s for the strain model 

can then be used to relate directly the fluid speed (wind) to the strain along the beam’s 

length.  

The spherical anemometer introduced by the German researcher Holling presents 

the opportunity to incorporate the theoretical cantilevered Euler-Bernoulli beam with a 
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spherical mass tip to develop a deflection and wind relationship driven by cross-area of 

the spherical mass and constriction of the shaft or the beam’s bending properties. 

The application of Hamilton’s principle and separation of variables to the 

Lagrangian Mechanics of an Euler-Bernoulli beam results in the equations of motion for 

the deflection of the beam as a second order partial differential equation (PDE).  The 

boundary conditions of our beam’s motion are influenced by the applied fluid forces of a 

relative drag force and the added mass and buoyancy of the sphere. Strain gauges will 

provide measurements in a practical but non-intrusive method and thus the concept of a 

measuring strain gauge is simulated. Young’s Modulus creates a relationship between 

deflection and strain of an Euler-Bernoulli system and thus a strain and wind relation can 

be modeled as an ODE.  

This theoretical sphere anemometer’s second order ODE allows for analysis of 

the linear and non-linear accuracies of the motion of this dynamic system at 

conventional high speed conditions. 
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        Mass of Sphere 

      Linear Density of Beam, Density of fluid 

        Potential Fluid Function 

      Radius of Sphere, Beam 
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RHS Right Hand Side Notation 

     Wind Speed, Wind Acceleration 

   Estimated Wind Speed 
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CHAPTER I 

INTRODUCTION 

 

This thesis will focus on the analytical modeling of a hybrid body in a high wind 

speed environment and the effect of the induced flow forces in a non-viscous fluid. 

Hybrid bodies have not always been used to describe bodies of mass in motion due to 

the extra degrees of freedom brought into the analytical calculations as a result. It is 

common practice to use rigid bodies in most dynamic calculations to avoid the 

nonlinearities that a multi-body system can encounter. Additionally, continuous bodies 

can experience sheer stresses and compressions among an indiscrete domain; thus, these 

additional nonlinearities will impose a variable force in the multi-body system equation 

of motion. 

Classical Mechanics is often applied to rigid bodies to model their equations of 

motion.  These simple systems have the center of mass as the object of interest for the 

body’s motion. Aerodynamics however requires precision for every degree of freedom 

in the system; consequently, external forces applying sheer stress and compression to a 

continuous body are subject to numerous influences per point. Finite element methods 

have been used often to deal with the additional degrees of freedom that these complex 

bodies of masses entail. However, for our theoretical problem we will approach our 

modeling of the continuous body with generalized coordinates. In this thesis we will use  

Lagrange’s equations for the continuous beam and rigid sphere mass proposed for the  

________ 

The journal model is IEEE Transactions on Automatic Control. 
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anemometer system. 

Current research focused on anemometry has made breakthroughs in new 

measurement techniques suited for specific conditions [1]. The hybrid model used by 

Holling, via optics, a spherical anemometer is used to calculate highly oscillating wind 

speeds to a greater capacity than the traditional cup anemometer design and to a similar 

accuracy as that of the hot wire anemometer [2]. As a result this spherical anemometer is 

calibrated to react with the given wind environment and then extrapolated for a 

differential model.   

With the increase of natural disasters, wind environments can take many forms. 

Tornadoes and high wind speeds of nature can be catastrophic. Careful analysis by a 

record of wind speeds in particular neighborhoods could provide benefits to insurance 

companies, meteorology, and even civilians. For this reason a robust method of 

providing an anemometer to provide accurate but inexpensive readings could be a tool to 

be used in the future. Because wind forces can act in unpredictable ways and wind 

anemometer with recording abilities could help determine the wind speeds experiences 

at one home versus another within close vicinity. 

This experimental model has contributed an innovative way to absorb these 

contributing forces and relating the wind speed based on the beam’s deflection. The 

experimental work established has as a result brought motivation to develop a full 

dynamical analysis of this hybrid model to create the equations of motion for a spherical 

anemometer including additional inline fluid forces that may not be included in 

traditional approximations.  
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 The nonlinearities consist of the concepts of the added mass phenomenon, 

buoyancy, and drag forces. Although these wind forces can prove to be minimal in most 

low fluid density environments, the dynamical model will prove significance, or lack 

thereof, in such a system. The goal of the integration of these fluid influences into this 

theoretical model is a robust second order differential system which can output wind 

measurement approximations for a given wind model.  

Creating this robust dynamical model will require accuracy in the calculation of 

the deflection in an experimental setting. The development of an estimated dynamic 

model for the wind speed according to the equations of motion will be achieved by 

adopting this comprehensive model. The basis for this theory’s development consists of 

the theories of separation of variables, Euler- Bernoulli beams, Hamilton’s Principle, 

Lagrange’s Equations, and steady state solutions.  

The development of these necessary theories will construct the dynamic model to 

estimate the wind speed of the given experimental environment. By simulating the 

dynamic ODE model for the motion of the spherical anemometer, the system’s response 

to varying beam properties and wind conditions can be further analyzed. The steps taken 

to achieve this dynamic model are as follows:  

1. Develop the distinct nonlinear fluid forces which will affect this hybrid 

system. 

2. Research the properties of continuous bodies for the beam of this spherical 

anemometer. 
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3. Use Hamilton’s principle via Lagrange Method to conjure equations of 

motion for the hybrid system. 

4. Incorporate the boundary conditions for the given system requirements to 

satisfy the beam and sphere’s motion subject to all forces in system. 

5. Develop a relationship between the beam’s deflections via EOM into the 

corresponding wind speed. 

6. Calculate the partial differential equations using separation of variables and 

uncoupling methods. 

7. Create a relationship between strain and the differential equations of motion. 

8. Test the dynamic model of strain for behavior. 

9. Reiterate process with simulated measurement error to project strain and 

wind speed relationship. 

10. Implement data recording method for complete simulation. 

Once the methodology is achieved, the model will be applied for a variety of 

simulation test cases to verify the accuracy to given wind models. 
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CHAPTER II 

BACKGROUND 

 

This chapter will briefly introduce the different ways anemometers measure and 

approximate wind speed to assemble distinct and similar qualities to the spherical 

anemometer. A further description of the Newtonian physics of the fluid induced forces 

affecting the spherical anemometer’s motion will be developed to bond the relationship 

between force and motion. For further investigation of the motion of this anemometer 

particularly, the beam, an assertion has to be made to define this beam as a continuous 

body which thus has infinite number of positions in motion. The development of 

kinematics of this hybrid body of mass will be aided by using Hamilton’s Principle and 

Lagrange’s Method.  

The contributions by Holling and Blevins consist as the central ideas for this model. 

The concepts and derivations of the corresponding fluid forces for this model will be 

further explained by applying known fluid properties from works by Blevins. The 

deflection, motion from the neutral axis, calculated via Lagrange’s Method will then 

become important in developing the relationship to the sought after wind speed 

approximation in the proceeding chapter.  

 

A. Anemometer Background 

The purpose of anemometers when they were first developed was simple; it needed 

to find a method to calculate practical wind speeds. The basic model consists of a 
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number of hemispherical cups connected in an array form by rods to a central vertical 

shaft.  The use of the cup anemometer simply approximates the wind speed by the 

number of turns by the cups due to the wind force applied in a specific period of time. 

Hot-wire anemometers have also been used for high frequency analysis of rapidly 

changing winds found in turbulence wind conditions. Holling’s experiment revealed a 

rapidly changing wind environment is best read with a hot-wire anemometer for speed; 

however, the sphere anemometer more frequently provides better approximations of the 

wind model’s speed without over-speeding like the traditional cup anemometer does in 

the same environment. The sphere anemometer demonstrates an improvement from the 

over-speeding problem the cup anemometer showed with higher frequency winds [2].   

 

B. Using Spherical Anemometer 

Holling’s model proves that the wind induces a drag force to be the main driving 

component of the beam’s excitation and motion; for this case, the drag will be a 

component to develop and include in the beam model’s equations. Blevins’s contribution 

to buoyancy and added mass forces for flow induced models will contribute to the rest of 

the force application for this model. The flexibility of this anemometer contributes to the 

hybrid aspect of this body mass and thus introduces a different kinematic model with 

specific properties. The flexibility in this spherical anemometer can lead to several 

uncertainties and degrees of freedom as a result but for the purpose of the wind 

conditions and model needed we will assume the Euler Bernoulli Beam properties for 

the flexible vertical shaft of this anemometer.  
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C. Drag Forces 

Drag has been used in a general basis as a force with quadratic velocity 

dependence, 

 
    

 

 
       

     (2-1) 

The drag force is best suited to comply at relative high fluid speeds (wind speed 

in this case). Ideal flow is assumed to avoid additional considerations such as shear, 

viscosity, and other fluid non-linearities. These generalizations are made with the 

consideration that the wind speed of the environment is much greater than the speed of 

the body mass. However, when considering fluids and masses that accelerate quickly, a 

beam with a relative drag force is better suited according to Blevins’s formula [3].  

 
     

  
 

 
                          (2-2) 

In this linear relative drag force      
 it be must be noted that the measured units 

are that of Newtons per length of the cross section. The rest of the variables are familiar 

to the traditional drag force such as a varying drag coefficient,     (dependent on the 

shape of the body mass) in the given fluid with density       . When given the scenario 

of the anemometer exposed to a wind environment governed as     ’s properties, the 

drag force is dynamically dependent upon the fluid speed, U, and the speed of the 

anemometer,   . The motion of the anemometer, y references the deflection from the 

beam’s neutral axis, position at complete rest. This beam’s deflection, y, is both a 

function of time and position since the deflection of the beam will vary along the beam 
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and with respect to time. The numerous points of motion and deflection will make the 

drag force of the anemometer in its entirety complex due to the drag forces subject not 

just upon the spherical mass but also along the beam of the anemometer. However if a 

spherical mass’s cross sectional area can be relatively large compared to a thin beam’s 

cross sectional area; consequently, the drag along the thin beam can be neglected. The 

parameter considerations in Chapter 5 will detail the equations used to make the 

mentioned assumptions.  

 

D. Buoyancy and Added Mass Concepts 

Two additional forces that develop for a mass present in a fluid flow include 

buoyancy and added mass. Air is still subject to same inline fluid forces as denser fluids 

such as water but air’s significantly lower density lowers the magnitude of these two 

forces.  

Buoyancy is commonly referred to in examples masses submerged in fluids, 

commonly water, to show the fluid force phenomenon opposing other forces such as 

gravity. Added Mass is also present in the movements of mass structures submersed in 

fluids under fluid acceleration.  

Both of these are considered inline forces and a result of the pressure gradient 

present at the surface of the mass subject to the wind speed model. This inertial force as 

described by Blevins can be calculated by means of the integral equation for  
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    (2-3) 

Blevins identifies the potential function for the flow over a sphere with radius of 

R as: 

 
            

  

   
       (2-4) 

With the potential function known for the flow surrounding a spherical mass, the 

Navier-Stokes equation can be used applying the potential equation’s properties for the 

purpose of calculating the pressure along the spherical mass. Under the assumption of an 

inviscid fluid the Navier-Stokes equation can be re-written as: 

 

 
  

  

  
  

 

 
    

 

 
    (2-5) 

 

This gradient’s argument can be inferred to equal to a constant in space or a 

function of time     . Thus Blevins states the pressure as, 

 

 
           

  

  
  

 

 
     (2-6) 

 

The inline force integral requires the normal vector and dS to be calculated. 

Because the principal mass affected is a sphere, Figure 1 geometrically projects the 

simpler evaluation via spherical coordinates.  
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With the normal vector to the surface of this sphere mass will be directed in the 

same manner as the     vector. The infinitely small surface can be defined as a cross 

sectional area for dS and completing the components necessary to evaluate   . 

 
             

 

 
        

 

 
        

 

 

  

 

               

  
 

 
      

       
             

 
 

 
      

       
               

 

(2-7) 

The buoyancy for a sphere is accurately represented through this derivation, 

revealing the force of the mass displaced by the volume of the fluid at the flow 

acceleration. The added mass phenomenon holds true to reveal Blevins added mass 

equation as a force per length [3]. However integrated over a length dimension would 

result in total linear force exerted at surface of the spherical mass. Thus Blevins equation 

can be re-written two different ways,  

  

      

    

    

  

  

  

Fig. 1 Spherical coordinate system of sphere mass 
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(2-8) 

 

By calculating and applying the previous equation it can be calculated to be 

composed of the accumulation of these forces result in the net fluid forces applied.  

 

E. Hamilton’s Principle via Lagrange’s Method 

Classical kinematics can come to a struggle to define this anemometer’s motion 

along the beam length due to the continuous with several degrees of freedom. As another 

solution better suited to incorporate a continuous body, Hamilton’s principle will derive 

a set of differential equations of motion of the given system using generalized 

coordinates. Hamilton’s principle allows for the use of the Lagrangian, the basic 

building block for using Lagrange’s Method.  

Both theories along with the inline fluid forces present in the wind model will be applied 

to the Euler-Bernoulli beam theory in the following chapter. 
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CHAPTER III 

DEVELOPING EQUATIONS OF MOTION FOR SPHERE ANEMOMETER 

 

A. Spherical Anemometer Proposal 

The wind forces previously summarized provided a better understanding of the 

influence a sphere anemometer is expected to undergo. The task of designing this 

anemometer is first diagrammed in Fig. 2, such that the body, motion, and forces of this 

hybrid system will need to be designed. The vertical shaft as in previous sphere 

anemometers is important in supporting and influencing the deflection of the sphere 

mass. A beam with stiff bending capability such as that of a Timoshenko beam would 

encompass the motion and stresses in various dimensions. However for the purpose of a 

simple wind model, with minimum turbulence and vorticity, a simplified Timoshenko 

beam, the Euler-Bernoulli beam, will neglect shear strains and torques. The Euler-

Bernoulli beam as a result satisfies the criteria of the continuous body. A single 

dimension of deflection can now be the focus for the design of this anemometer. The 

proposal for the spherical anemometer is diagrammed below: 
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The diagram depicts the motion of the spherical anemometer with a steady wind 

flow     . The motion of the beam and spherical mass according to Euler-Bernoulli theory 

varies by two parameters: the position along the beam, x, and traditional time variable. 

This Euler-Bernoulli Beam has deflection y, total length  , linear mass density   , 

Inertia I, and stiffness E. 

 

B. Euler-Bernoulli Beam Derivation 

1. Lagrange’s Method 

The Lagrange’s Method identifies the contributing energies of the system to 

calculate the Lagrangian. The hybrid system’s energy contributions come from both the 

Neutral 

Axis 

     

  

x 

      

y 

Fig. 2 Sphere anemometer diagram 
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beam and sphere’s kinetic and potential energies. Because of the assumption to use a 

cantilevered Euler-Bernoulli beam, torsion influences can be ignored and bending occurs 

in a single plane. Thus, deflection along the continuous rigid beam will be parallel to the 

wind direction. The motion of the sphere mass moves together with the beam’s end and 

thus its speed is equivalent to the beam at the tip. Both the speed of the beam and the 

speed of the mass sphere can be identified as         and         respectively. Therefore 

the kinetic energies are: 

 
       

 

 
          

    
 

 

  

         
 

 
              

  

 

(3-1) 

Similarly, this beam’s potential energy will be composed of the elasticity of 

material, second moment of inertia, and deflection along the entirety of the beam. The 

spherical mass is a rigid body with a constant potential energy in the deflection of the 

beam for small deflections thus only the beam contributes to the dynamic potential 

energy, V.  

 
       

 

 
         

 

 

 (3-2) 

2. Lagrangian for Hybrid Body 

The Lagrangian is considered the difference in kinetic minus potential energy; 

however, a complete system can be composed of discrete, continuous, and boundary 
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parts.  Thus we can develop Hamilton’s Principle further with the full Lagrangian known 

as: 

 
      

 

     (3-3) 

In this beam’s case, the complete Lagrangian only has continuous and boundary 

components due to the lack of a discrete component in the cantilevered beam system.   

The continuous part here corresponds to the kinetic and potential energy along the length 

of the beam.   The boundary part corresponds with the mass tip’s properties.   

As described in the previous section the main wind force will be applied upon the 

spherical mass at the beam’s end and thus produce work energy in the anemometer 

system. For the development of the following PDE equations, the non-potential 

work     will influence the energy contributions for the hybrid system and thus the 

Lagrangian. The non-potential forces in this system consist of the combination of inline 

wind forces. Therefore, 

                 (3-4) 

     only represents the non-potential forces acting at the length of the beam, 

specifically the mass tip. The development of Euler Bernoulli Beams complies with the 

Lagrange-D’Alembert Principle, which states the following: 

 

            (3-5) 
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The Lagrangian, L, is expressed in terms of a variation by the   operator. This 

satisfies the equation made possible by Hamilton’s Principle. Thus variation of the 

Lagrangian in conjunction with Hamilton’s Principle states: 

 

              

 

 

                 

 

 

 (3-6) 

 

Because of the hybrid system, the satisfying equation will be applied to the 

corresponding parts of the system. A note should be made that there is a distinct 

difference in the time derivative used with the kinetic terms and the spatial derivatives 

appearance with the potential term.  

 

 
  
 

        
 

 
          

     
 

 

 

 
              

   
 

 
         

 

  

                 

                             
 

 

                        
 

              
 

 

                 
(3-7) 

In Equation 3-7, each kinetic and potential variation term prevent a traditional 

integration from being used; consequently, the integration by parts method will be used 

to progress the derivation process with either respect to time or length. Hurtado explains 

this process as one such that the boundary conditions specifically are produced per 
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implementation of integration by parts to the potential variation term [4]. The first 

boundary condition term, BC1, is produced from the first integration’s boundary terms 

set to zero and the second boundary condition term, BC2, is a result of the second 

integration procedure. Next we show both BC1 and BC2 for further evaluation.  

 

Boundary Conditions for Parameter       : 

BC1:                                              (3-8) 

BC2:                                        

                                       

(3-9) 

 

By the definition of a variation such that                     By following 

Figure 2, the first two boundary conditions are set for this cantilevered beam.  

 

BC3 : 

BC4: 

           

            

(3-10) 

BC3 and BC 4 infer the fixed end of the beam having zero deflections and zero 

slopes respectively at all times. Applying these conditions to the first two boundary 

conditions allows for the bending moment and shear moment to be identified as shown 

below: 

 

BC1:                 (3-11) 
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BC2:                                       

As a result Equation 3-7’s integral terms simplify to: 

 
  
 

                                            
 

 

    
 

 

    (3-12) 

 

3. Non-Homogenous vs. Homogenous 

The homogenous partial differential equations lie in the integral of Equation 3-

12. Along with this PDE, the set of non-homogenous boundary conditions in Equations 

3-10 and 3-11 accompany the equations. The shear boundary condition is mostly 

affected by the sphere mass at length   of the beam and thus is not equal to zero. In order 

to apply modal analysis to the PDE’s, the equations are rewritten by use of the Dirac 

delta function.  The Dirac delta function allows for the third boundary condition to be re-

written such that: 

 

                        
        (3-13) 

With homogenous boundary conditions, 

                                                            (3-14) 
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C. Implementing Fluid Forces 

1. Applying Buoyancy, Added Mass, and Drag 

According to the buoyancy equation our buoyancy force will be, 

           (3-15) 

Considering the anemometer is exposed to wind resistance and air’s fluid 

properties, Blevins Added Mass component applies to the deflected beam.  The scenario 

best fits the added mass phenomenon in an accelerating fluid case. So the added mass 

force is, 

                     (3-16) 

In both equations,    indicates the density of air, V is the volume of the mass tip 

sphere exposed to the wind environment, U is the wind speed, and    is the mass 

acceleration.  The third component, which this anemometer will be exposed to, is the 

drag force. The drag is calculated in a similar fashion to Blevins’ Galloping and 

Fluttering cases for the point mass examples he studies. A relative form of the drag force 

is introduced by Blevins to factor large body accelerations, 

 

 
    

 

 
                  (3-17) 
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These three force components equate to a total wind force         representative 

of the force affecting the anemometer’s mass tip in the non-homogenous differential 

equations of motion derived beforehand.  

 

                    

                              
 

 
                  

(3-18) 

 

2. Separation of Variables 

The concept of separation of variables is considered for the case of the Euler-

Bernoulli beam due to the partial differential equations subject to two parameters. The 

first assumption made is: 

             (3-19) 

Then the Euler Bernoulli equation                 where   and    are 

constant beam property values. Substitution leads Equation 3-19 to: 

                          (3-20) 

The first step for the separation process involves solving for the spatial 

component      by division of       : 

 

   

 
 

  

  
 
     

 
   (3-21) 
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By introducing     as a constant equal to 
  

  
, then the variable   can be defined as 

the harmonic frequency to satisfy the orthogonal function       in equation  

   

   

 
       

     

 
      

       
  

   
        

  

   
     

     
                  

 

(3-22) 

This procedure yields a function with four orthogonal terms.  

                                                    (3-23) 

If we recall the conditions of our non-homogenous partial differential equations 

with homogenous boundary conditions, then we can re-state the boundary conditions in 

Equation 3-14 with      definition in Equation 3-23. 

 

                                  

                                  

                      

                                              

                        

                                             (3-24) 

Equations 3-24 entail not just                 as unknowns to solve but also the 

  variable. This   is representative of the resonance frequency for the hybrid system. 
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Thus, if                 can be calculated by a system equations that can be analyzed 

individually via the matrix representation of the system of equations [A][C] = [0], where 

[A] is a 4x4 coefficient representation of our four equation listed above, [C] = 

[            
  , and [0] is a 4x1 matrix of zeros. Solving this problem requires using the 

properties of a determinant to set [A] to be a singular matrix (determinant equals zero) to 

satisfy the 4 applied boundary conditions of Equations 3-24. Because   is left as an 

unknown in the system the following infinite solutions can be produced from the 

resulting statement: 

                     (3-25) 

While Equation 3-25 reveals solutions for  , there are infinite frequencies to 

choose from. For the purpose of this work only the first three harmonics or available 

frequencies will be included. For future works additional frequencies could be used. 

To solve for      we can re-write      as,  

              

 

                                  (3-26) 

Now we can define                       or y =      via index notation. This 

method proves efficient in the uncoupling procedure for a T(t) solution, the expansion 

and the calculation of     . As stated earlier, the beam’s PDE and wind force are re-

written when applied to Equation 3-13 with the new definition for the loading force:  

                              (3-27) 

                  
                                      (3-28) 
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In order to arrive at an ordinary differential equation for T(t) we follow the 

following: Multiply by    and integrate from     for both sides, 

 

 
                         

           
 

 

                                      
 

 

 

(3-29) 

In Equation 3-23      was defined as an accumulation of orthogonal 

components or eigenfunction expansions in Sin, Cos, Sinh, and Cosh [5]. Thus 

according, to Byrne’s definition of orthogonal functions via inner spaces the harmonics 

of   can be subject to the orthogonal condition [6]. Below we can apply the inner space 

product to the spatial function: 

 

       

 

 

     
   (3-30) 

Here    represents a normalized     . For normalization, each individual   

harmonic will need to be normalized. For example using the variable   to normalize the 

first   as follows: 

 

     

 

 

              
 

  
   

 

(3-31) 
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For simplicity of notation the normalized notation will be withheld from the 

following derivation but included in the simulation. Evaluating each term individually 

yields the following: 

The LHS, 

 
               

 

 

             
 

 

            (3-32) 

 

 
         

         
 

 

          
        

 

 

           
        

 

 

      
           

    
      

 

 

    
        

 
   (3-33) 

 

The RHS, 

 
                             

      
 

 

  

            
      

 

 

  

                    
      

 

 

  

              
        

 

 

                      
(3-34) 
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The         term can be recalled from Equation 3-18 to be a function of 

                terms, thus by substitution and application of definition of y from 

Equation 3-19 the terms become expandable. 

Because of the drag force’s use of a relative velocity, the absolute value presents 

further complexities towards the simplification of the theoretical derivation of these 

equations of motion. Experimentally and for simulation purposes an integrator will 

satisfy this condition without a problem. Eliminating the absolute value will be 

conditional by  

For     , 

 
                            

 

 
              

 
      

 

 

      

(3-35) 

 

First,    Term simplifies: 

 
              

 

 

                           (3-36) 

 

Second,     term: 

 
   

                  
        

 

 

                     (3-37) 

 

Third,    term:  
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       (3-38) 

 

Fourth,     term:  

 
    

  

 
              

         
 

 

                     (3-39) 

 

Fifth,        term:   

 
   

  

 
                 

         
 

 

  
 

 
                

 

 

   
        

  
 

 
                            (3-40) 

 

Now our PDE equation becomes an ODE for T(t): 

                                              

                    

 
       

      

 
 

 
                            (3-41) 

 

3. Equations of Motion for Anemometer 

The non-linear ODE that results from the equation above occurs when j =i = k, 
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  (3-42) 

Such that, 

   
           

 
       

                                         (3-43) 

 

This non-linear differential equation now can be computationally solved or used 

for any other functions dependent upon the function of T(t) such as the strain function, 

      . The following section will develop the relationship between strain and the time-

dependent function of the beam to give us a second order differential for strain. 

 

4. From EOM PDE to Strain ODE 

Measuring strain for the beam deflection will use a set of strain gauges to be 

placed strategically to give the best measurement of total bending moment and indicate 

direction. Through implementation of a Wheatstone bridge, a stress placed on the strain 

gauge will cause a change in length of resistors. Thereby a change in resistance is given 

by the equation, 

   
      

 

 

  

 
                         

  

 
   (3-44) 

 

The gauge factor, G.F., is an abbreviation for a constant value of a strain gauge 

expressing a relation in resistance and length.  
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According to Young’s Modulus strain is related to stress by, 

                
 

 
    

   

        (3-45) 

 

The function u is the deflection equation for the beam in Equation 3-18 and c is 

the displacement of the strain gauge from the central axis of the beam’s center, in this 

particular research it will placed on the outside of the beam thus, c will reflect the 

magnitude of the beam’s radius.  

Thus, 

   
      

   

   
 (3-46) 

 

By applying the separation of variable Equation 3-19 to relate between strain and 

the equations of motion for anemometer’s beam, 

Accordingly we can find   ,      and     

                                                          

                           (3-47) 

 

We will define  

                        
        

 (3-48) 

By some algebraic coefficient multiplication we can use     to create a second 

order differential: 
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 (3-49) 

This differential equation for the beam’s strain is now a second order non-linear 

ODE dependent upon wind speed and acceleration. A computational solution of this 

differential can be integrated using MATLAB’s ordinary differential equation solver. 

The preceding strain model however contains several parameters that have been briefly 

discussed but for the purpose of a future experiment a design method for several 

parameters will be detailed in the following chapter.  This strain model thus will serve as 

the true model for the strain the sphere anemometer will undergo at   , the placement of 

a test strain gauge. For approximation of wind speed not all the parameters of Equation 

3-48 will be available and thus another approximation will be discussed.  
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CHAPTER IV 

CALCULATING WIND SPEED 

 

The wind force loads and the derivations of the motion of the sphere anemometer 

have led to a strain model that can be used for simulation of the true strain per the theory 

implementations. The next phase for the wind speed approximation lays in the design of 

both the wind model and the physical anemometer parameter dimensions. As some 

theories have been applied earlier the same must be applied in the design of both 

environment and system to prepare the simulation. 

 

A. Simulation Preparation 

The anemometer simulation will be represented by using the strain model 

presented earlier, along with a theoretical strain gauge influenced by white noise to 

project realistic measurement errors with accuracy as Omega’s SG-Series strain gauges. 

The wind model consists of a ramp function followed by a semi-steady state phase 

containing relatively small amplitudes of oscillation. This simulation will undergo a 

sixty second run time for the purposes of the following examples. Using the 

measurements from the theoretical strain gauge, the steady state equation will 

approximate the wind model   .  
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B. Wind Environment Model 

For the given wind model there will two be two important phases for which the 

wind model will pertain to during simulation. These sections can be classified as a 

transient or a steady state. The transient state behaves as its name suggests for the initial 

ten seconds of the time window. This portion, unlike a steady state, has a fluctuation in 

wind speed and acceleration. During the transient phase, the anemometer is subject to all 

of the fluid forces previously derived and as a result maintains the complexity of the 

complete strain ODE. Although using the complete strain ODE would provide the best 

accuracy, an experimental setting would not be able to provide strain rates necessary for 

the higher order terms of the model. Because the strain gauge measurement involves 

white noise for this simulation, the strain rate cannot be approximated using the rates of 

the measurements. Consequently analyzing the steady state approach is the best fitting 

for wind approximations. 

Thus the following simulations will be analyzed by an environment experiencing 

that a ten second wind transient state followed by an semi-ideal steady state experience 

with minor oscillations. To assume a steady state we will incorporate the      model as 

follows: 

   
      

                     
                               

  (4-1) 

 

Where, 
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                     (4-2) 

The purpose of       is to simulate the slight oscillations, amplitude    , that can 

occur during the steadiest phases of a wind environment.  

During steady state conditions however the components necessary to 

approximate    are simply compiled from the measured strain,   , without a need for the 

measured strain’s rates since constant wind conditions will render    , and    , negligible to 

zero in a perfect constant wind or an ideal steady state. 

 

C. Euler-Bernoulli Beam Model 

Several theories and approximations have already been assumed and made for 

simplicity purposes in modeling the vertical shaft for the spherical anemometer.  The 

Euler-Bernoulli beam theory was adopted for this model; as a result, the physical 

parameters influenced will be constrained to a degree for the simulations to follow. 

In chapter 2, the concept of an Euler-Bernoulli beam was introduced due to the favorable 

properties that prevent shear and other trans-axial strains from influencing the primary 

deflection of beam from neutral axis. The first constraint distinguishes the material 

composition of this beam.  The theoretical beam (the experimental anemometer’s shaft) 

is restricted to a small deflection to length ratio. A material with a high enough stiffness 

and density to prevent large deflections is required.  This restriction is defined by Euler-

Bernoulli’s theory which cannot approximate accurately at large deflection ratios due to 

the associated non-linear motion. With AL6061’s high density of 2700 kg/m
3
 and Elastic 
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modulus upwards of 7 Giga-Pascal, the beam should maintain relative small deflections 

despite high wind speeds; consequently this aluminum alloy is proposed for testing.  

However another essential parameter in an accurate model of an E.B’s beam 

deflection pertains to maintaining a 10:1 length to width ratio. As a result, this 

assumption for length can be considered for the simulations. 

                  (4-3) 

The second approximation to be considered is the negligible drag force of the 

beam’s normal surface area to the wind. The general thought is to make sure that the 

ratio of drag force upon the spherical mass to the drag force along the beam’s length is 

large enough to deem the beam’s length drag force negligible. Thus minimizing the 

continuous parameters of the beam’s drag will leave a relatively small load across the 

length of the beam. For this reason only a drag force is loaded at the beam’s end. The 

parameters to take into account are      ,      , and         as the most critical to 

affecting the surface area subject to the drag force. Using approximation for the 

negligible drag force of  

   
      

  
 

 
                  

          (4-4) 

In contrast to the drag force applied at the beam’s end,       
         will 

introduce another constraint to consider with design parameters. Ideally a decent 

approximation for this condition would suggest 

         
        (4-5) 
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Applying Equations 4-3, 4-4, and 4-5 to   yields a direct relationship between 

the sphere’s radius    and the beam’s radius   . Equation 4-6 below shows this. 

   
  

   
  

 
  

  (4-6) 

 

Thus, this leaves the radii of beam and sphere mass variable to a degree of 

convenience and practicality. The beam’s width however does need to be large enough 

to hold a basic strain gauge such as the SG-Series strain gauges by Omega, featuring a 

width ranging from 0.1 - 0.2 inches, depending upon the specific model [6,7].  

Incorporating the previous consideration in conjunction with the drag force condition 

will allow for the following parameters to be set: 

          ,         , and              

Although, these parameters are higher larger in magnitude than other previous 

experiments, the strain gauge will be physically accommodated under these parameters.  

 

D. Simulations 

The simulation of the spherical anemometer is next tested with steady state wind 

conditions, variations in beam parameters, error magnitude per strain gauge, parameter 

uncertainty, and sampling frequency to accurately compare steady state responses and 

the respective wind approximations. 
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1. Introducing Strain Gauge Noise Parameters 

The linear relationship between the motion, deflection of the beam, and the strain 

active along the beam is directly related by the scaled factor shown previously, thus the 

true strain can directly the strain model in Equation 3-49 by ode45’s Rung-Kutta’s 

method. In order to understand the effect and magnitude of strain to expect with the 

giving considerations our first simulation is the baseline model approximation as shown 

below: 

 

 

 
Fig. 3 Strain model according to steady wind oscillation 

 

Figure 3 shows the complete collection of measured strains varied in error 

magnitude by a white noise application to the true strain model integrated by ODE45. 

Above the true strain model and the measured strains, following the standard deviation 
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of white noise by 1%, 5%, 10%. True strain, 1% error, 5% error, and 10% error and 

shown from thinnest to widest plots respectively.  

Implementation of the Steady State equation for the approximation of      

specifically, is indicated below: 

 

   

       
  

    
    

       

          
 

(4-7) 

 

This steady state approximation will allow for wind analysis with varying strain 

gauge noise. 

 

 
Fig. 4 Wind model approximations according to steady state 
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The wind approximations shown in Figure 4 reveal the effects of the strain 

gauge’s accuracy. The additional straight line approximately shown at 150 mph is the 

     calculated by means of an averaged window from t= 30 to 60 seconds.     averages 

the measured strain during the steady state and thus can calculate a steady state 

approximation for the 30 second window span.  

These calculations show the constant variance due to the high frequency in the 

strain measurements per point due to the non-fixed time steps of the Runge-Kutta 

method used. The large number of measurements leaves open the possibility to attempt 

averaging a set number of strain measurements and using the corresponding strain 

average to continuously update a wind approximation. Using this running average 

should help offset the white noise at the expense of a delay depending on the time 

window used.  

 

2. Introducing Parameter Perturbation 

Known parameters for experimental test can often be inaccurate to a degree due 

to numerous reasons such as calibration issues, physical dimension errors, equipment 

inaccuracies, etc. Parameter perturbation can be concerning in these simulations as well 

if the true strain for the anemometer is not exact due to a slightly longer beam, heavier 

density material, or even inaccurate coefficient for drag.  

The purpose of the following simulations involves modifying the individual 

parameters of the strain steady state equation and observe significant changes if any.  
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Fig. 5 Strain model magnitude 

 

The original method is displayed in Figure 5, without parameter perturbation and 

   following the similar oscillation of the true wind model and averaging nearly 150 

mph.  

 

 

 
Fig. 6 Perturbation of      
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Figure 6 shows the effects of modifying the density of air,   , or distance to 

strain from center of beam, having an error of up to 5%, gives a result very similar in 

characteristic to the original calculation for   . However, the exception in results is a 

constant under approximation by 4 mph.  

 

 
Fig. 7 Perturbation of beam radius 

 

Radius of the beam proves to be one of the most significant and dramatic 

changes in wind approximation results. Figure 7 shows how a 5 % error in the beam’s 

radius is capable of a -15 mph or -10% errors in wind approximation. Through 

perturbation of the beam’s radius it can be inferred that radius length does have at least a 

fourth order exponential influence upon the steady state equations. 
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Fig. 8 Perturbation of elasticity 

 

The Elastic modulus parameter for the beam as a result has an approximate 4 

mph deviation from the true model due to the single linear contribution to the steady 

equation. Thus, Figure 8 shows that a 5% perturbation only causes a 2.7% alteration to 

  . 

 

 

  
Fig. 9 Perturbation of beam length 

 

Figure 9 specifically focuses upon the effect a 5% overestimation of the Beam’s 

length can have a -8% influence of   . 
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Fig. 10 Perturbation of sphere radius 

Figure 10’s slight estimation errors are shown above due to perturbations of 

sphere radius. 

 

3. Introducing Average Window Method 

Because of the high frequency in MATLAB’s ODEs having a running average 

window can take a width of readings and average    for a rolling time span which in 

effect will average the strain gauges white noise that can interfere with estimating 

accuracy of   . Shown below in Figure 11 the imminent difference is shown: 

  

Fig. 11 Wind estimate with strain gauge noise 1%, 5%, 10% 
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Figure 12 provides an updated plot of the new comparison in the approximation 

     to the true wind model. The first observation is clearly the reduction in noise. The 

slight delay is evident however for these purposes the delayed model betters the previous 

U approximation model.  

 

 
Fig. 12 Wind estimate average method error  

 

Comparing the difference in the high error and low error difference with respect 

to the true wind model shows the higher and distinct error noise involved with the 10% 

error plot. Another observation to be noted involved the low magnitude in error along 

steady state and the lack to capture the complete transient state. The absence of the strain 

rates and wind rates are unknown during the transient phase and thus our steady state 

model fails to adequately capture a complete wind approximation.  
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4. Introducing Frequency Sampling 

The simulations so far have been performed under the specification of a running 

average with a set time window which allows for better results in exchange for a time 

delay or lag in simulations. For the purpose of our work the lag is not a concern since 

specific time of occurrence is negligible compared to accuracy of actual wind speeds 

achieved. For a brief a analysis of the simulations high sampling frequency, required by 

Runge-Kutta4 for integration purposes at equal time intervals, the simulation is set to be 

sampled at the original 1600 Hz by the integrator down to 25 Hz.  Later the 

implementation of a strain gauge implementation will use an even lower frequency but 

for the purposes of this analysis the wide range shows the significance of sampling. This 

allows us to explore the sampling frequencies of 1600 Hz, 800 Hz, 100 Hz, and 25 Hz 

for analysis.  

 
Fig. 13 Wind estimate via frequency sampling 
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 The U approximations in Figure 13 tend to indicate the lower frequencies to be 

closer to the U(t) model; however, the high fluctuation in all of the sampled 

approximation models impedes an accurate conclusion. The wide range of +/- 10 mph 

does not provide with a reliable result to infer from. For this reason the running average 

is performed upon each sampled model: 

 

 

 
Fig. 14 Wind estimate of running average with sampled frequencies 

 

The lag is clearer and visible from the original U(t) in Figure 14. We begin to see 

a difference now between the highly sampled and the least sampled models. For a better 

analysis, an error measurement will indicate the discrepancy.  
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Fig. 15 Wind estimate with running average method error per frequency 

 

Figure 15 is an error plot revealing the difference in our sampled approximations. 

Both of our sampled approximations were done a running average window of 2.4 

seconds but the green data is lowered in frequency from 100 Hz to 50 Hz and the red 

model is lowered from 25 Hz to 12.5 Hz. The clear observation reveals an under 

sampled error deficiency where we can achieve numbers about 5 mph lower in a steady 

state due to a change in the sampling frequency. 

   

5. Recording Data Methods: Real-time vs. Data Logger 

Using a simulator such as MATLAB with an integrator such as ODE45 the 

number of points per second or sampling frequency can be very high in magnitudes 

particularly with the transient phase of the wind model reaching sampling frequencies up 

to 10 KHz. As a result using a fourth-order Runge-Kutta method can integrate with an 

evenly time-spaced frequency.  
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For an experimental setting the sampling frequency will be influenced by 

memory available for data storage and processing speeds of equipment. Unless working 

with real-time equipment or experimental equipment nearby, data loggers provide the 

best solution to have data stored to be retrieved at a later time.  Utilizing equipment such 

as data loggers will require a sampling frequency no higher than 1 Hz. For this reason, 

the effect of frequency sampling will be examined for the wind approximation of the 

given wind models.  

For the following cases a comparison between a 1000 Hz sampled approximation 

to a sampled approximation of the theoretical data logger under varying amplitudes in 

the steady state oscillations. Under steady state oscillations without amplitude, the wind 

approximation stays within +/- 2 mph or (1.4 % of U) 

 

Fig. 16 Wind estimate running average method with data logger  

 

The green data plot of Figure 16 shows the data logger sampling compared to the 

wind model. Under oscillations with amplitude set to 5: 
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Fig. 17 Wind estimate with data logger and amplitude of 5 mph 

 

The sampled data logger of Figure 17 approximates wind speeds within a +/- 2.3 

mph (about 1.5% U error) Under oscillation with amplitude of 15: 

  

Fig. 18 Wind estimate with data logger and amplitude of 15 mph 

 

With a 15 mph amplitude (10% wind oscillation), the data logger in Figure 18 is 

accurate to approximately +/- 5 mph (3.3% of U value).  
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CHAPTER V 

DISCUSSION 

Simulation performances by the steady state strain model for high speed wind 

were approximately analyzed for accuracy. Sampling frequency, steady state wind 

model, averaging window method and parameter perturbation was tested in Chapter 4. 

Strain measurements are designed by following the characteristics of a white noise 

subject to a standard derivation of a magnitude high enough to ensure satisfying the 

standard tolerances of Omega’s strain gauge specifications [7]. 

A. Full-Bridge Strain Gauge Implementation 

Chapter 4 showed how measurement error was applied due to strain error which 

was estimated by a white noise with a tolerance between 1-5%.  

National Instruments details the important resistance change and thereby strain by the 

schematic implementation of a Wheatstone bridge with simply one main resistor 

representing a strain gauge up to all four active resistors representing four strain gauges. 

This difference represents a quarter-bridge strain gauge model and the full-bridge strain 

gauge respectively. 
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Fig. 19 Simple wheatstone bridge [6] 

In Figure 19, the external voltage     yields no output voltage    if        

       . 

   
     

  

     
 

  

     
      (5-1) 

  

However with stain gauge application in conjunction with Equation 3-43 will 

yield variable resistance for   . According to a National Instruments’ tutorial, 

          
        (5-2) 

Here    
will refer to the nominal resistance per strain gauge, GF is the constant 

Gauge Factor, and   the compressed or tensed strain [7].  

To have a better understanding of exactly how the strain may be calculated in an 

experimental setting, we carry out the following example for a full-bridge strain gauge 

realization.  

For an experimental hardware setup the four strain gauges must be arranged for 

compression and tension purposes along the same position of the beam. Each strain 

gauge will have a nominal resistance and be accurate within +/- 0.5% according to 
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Agilent [8]. From an experimental setting the    
of each strain gauge are assumed equal 

and thus,  

     
   

         (5-3) 

 

The   is the only measurable variable thus,  

   
    

   

      
  (5-4) 

 

This is the ideal case though where nominal resistance does not influence the 

strain reading. However the tolerance in nominal resistance can influence the actual 

strain of the Wheatstone bridge. Thus a statistical analysis could be implemented to 

simulated true strains and voltages to establish nominal resistance values not exactly 

equal and see how accurately the strain can still be represented by the output voltage 

function. Because the full strain gauge contains noise in the resistance but are combined 

in the voltage calculations, the noise should reduce with the higher number of 

combinations of strains in a compression/tension pair. This simulation would lead the 

ground work for typical voltages to look for and anticipate if tested in a wind tunnel with 

real time data analysis. 
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B. Water Energy Harvesting 

Another growing purpose for investigation involves the use of waves and natural 

currents to create and store a clean and renewable energy source. Keeping track and 

optimizing the use of the water’s natural to store energy would require a method of 

keeping track of the current’s speed. A type of fluid anemometer is necessary in this case 

to keep track of the fluids changing speed.  

To implement this idea several factors could play into effect such as the 

performance needs of such a fluid measuring device. Assuming the purpose is to provide 

a simple reading of water speed in a fairly steady environment; the spherical 

anemometer is submerged in water but could be designed in a similar fashion to the 

anemometer for wind. The fluid density is the top change in this environment from 

relatively small 1.8 kg/m
3
 to magnitude of approximately 990 kg/m

3
. One of the things 

to consider is how dynamic the water currents will be in terms of sudden currents 

changing from steady state.  With the application of the running average method, the 

way the readings are recorded and the time lag will change to better fit the needs. 

Analyzing typical wave speeds will reveal a higher undergoing strain per fluid speed but 

overall lower fluid speeds in this scenario.  

 

C. Modification of Frequency 

Different weather services describe gusts of wind to be a distinctly higher wind 

speed held over a short time span of a few seconds. Thus the approximation model could 
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be expanded to accept steady wind models with oscillations spanning different lengths of 

time. An alteration in the frequency of gusts in an otherwise steady wind model could be 

analyzed for accuracy by data logger, as done in chapter 4, to see if the calculations are 

delayed.  The calculations would still involve some approximations as with earlier 

examples. Because the recording frequency is approximately 1 Hz and gusts of wind are 

at least strong for a couple of seconds, oversampling is not a concern. 

One other concern that may need to addressed when the environment model 

begins to diverge from the steady state model with not only higher oscillations but 

varying frequencies. For example a wind gust will not likely oscillate with the same 

period and strength in a normal environment. Thus wind gust could vary from very low 

frequencies to gusts of up to 3 seconds and maybe shorter. This could propose a need to 

make the model of the anemometer’s resonance frequency is set to be much higher than 

that of the wind. Thus changing the physical properties would need to be optimized to 

increase frequency. One frequency factor is dependent upon the mass of the mass tip. 

However making the mass smaller would also reduce drag and other fluid forces. For 

this reason simulations with a hollow sphere could expand the opportunity to introduce 

wind gusts and continue broadening the capabilities of this anemometer.  

 

D. Additional Dimension Analysis 

Ideal flow was treated to a one dimensional constraint for simplicity but when 

experiencing realistic unknown wind direction and conditions, the sphere anemometer is 

subject to bending in a combination of directions.  
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A proposed solution would involve expanding the idea of half-bridge Wheatstone 

strain gauges. By placing at least two sets of Wheatstone Half-Bridges at the four 

quadrants of the sphere anemometer’s beam at least two strain gauges will always be 

subject to tension and two to compression. The only exceptions would occur if the wind 

direction of      is directly perpendicular to a quadrant of the beam. For this case, an 

overall strain would have to be calculated by a vector-like combination of both strain 

gauge magnitudes.   
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CHAPTER VI 

CONCLUSION 

The approximation model of this research has provided a viable solution to 

implement a sphere anemometer under steady high wind speeds with modest accuracy. 

Although many linearized forces and assumptions were made for the purpose of an 

attainable ODE to integrate and test different setups; the accuracy of the strain model 

proved to be accurate with the filtering effect of an average time window for the wind 

speed approximation   .  

The continued accuracy of the steady strain model proves to be better than 

expected despite large amplitude oscillation in wind environment. Parameter 

perturbation proved to be critical for the three physical parameter fit to satisfy the 

considerations of the anemometer design. The thickness of the beam of this Euler-

Bernoulli revealed the strongest influence for the wind approximation by a great 

magnitude.    

This approximation algorithm has incorporated a complete dynamic model that 

sometimes captures small but still contributing fluid forces.  These forces are typically 

not incorporated into a sphere anemometer’s algebraic deflection-wind speed model. The 

effects of the inline fluid terms can be expected to have a much more significant effect in 

a fluid with high density like water. Several possibilities as discussed in the previous 

chapter are available to continue pursuing results.  
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A Full-Bridge Wheatstone implementation would statistically reduce the strain 

measurement error and thus provide an increased accuracy in the wind approximations. 

Implementing a different restriction for the averaging time window due memory 

constraints could also affect the delay of the results and/or the accuracy to capture higher 

frequency wind model changes by the steady strain model.  

Lastly the steady strain model has been dynamically modeled to incorporate the 

loads affecting sphere anemometer other than the drag of the mass sphere. By 

incorporating D’Alembert’s Principle, Lagrange’s Method, Euler-Bernoulli Beams, 

Navier-Stokes theory, and Young’s Modulus the relationship to wind progressed into 

complete differential equations of motion.   
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