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Abstract 

The detection of ischemic changes is a primary task in the interpretation of brain Computer Tomography (CT) of patients 
suffering from neurological disorders. Although CT can easily show these lesions, their interpretation may be difficult 
when the lesion is not easily recognizable. The gold standard for the detection of acute stroke is highly variable and 
depends on the experience of physicians. This research proposes a new method of automatic detection of parenchymal 
changes of ischemic stroke in Non-Contrast CT. The method identifies non-pathological cases (94 cases, 40 training, 54 
test) based on the analysis of cerebral symmetry. Parenchymal changes in cases with abnormalities (20 cases) are detected 
by means of a contralateral analysis of brain regions. In order to facilitate the evaluation of abnormal regions, non-
pathological tissues in Hounsfield Units were characterized using fuzzy logic techniques. Cases of non-pathological and 
stroke patients were used to discard/confirm abnormality with a sensitivity (TPR) of 91% and specificity (SPC) of 100%. 
Abnormal regions were evaluated and the presence of parenchymal changes was detected with a TPR of 96% and SPC of 
100%. The presence of parenchymal changes of ischemic stroke was detected by the identification of tissues using fuzzy 
logic techniques. Because of abnormal regions are identified, the expert can prioritize the examination to a previously 
delimited region, decreasing the diagnostic time. The identification of tissues allows a better visualization of the region to 
be evaluated, helping to discard or confirm a stroke.  
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1. Introduction 

Cerebrovascular diseases according to the World Health Organization are the third leading cause of death 
and the leading cause of disability in industrialized countries. The term “stroke” is used to describe the clinical 
phenomenon which consists of a sudden onset of neurological symptoms due to a cerebrovascular disorder. In 
contrast, cerebral infarction describes a lethal ischemic phenomenon at tissue level that corresponds to 85% of 
the cases of stroke [1]. A stroke can be classified into two major groups depending on its nature: hemorrhagic 
and ischemic [2]. The average duration of non-lacunar stroke evolution is 10 hours. Ischemia can cause 
functional neurological damage or may present as a cerebral infarction, which causes irreversible neuronal 
structural damage. Each minute, 1.9 million neurons, 14 billion synapses, and 12 km (7.5 miles) of myelinated 
fibers are destroyed [3]. 

 
Because of its wide availability, low cost, fast execution and proven efficacy, Non-contrast Cerebral 

Computer Tomography (NCCT) is the first choice for neuroradiology examination of all patients presenting 
an acute focal neurological deficit [4]. CT helps to differentiate the type of stroke and to discard other diseases 
that may cause a vascular process similar to a stroke such as tumors, bleeding, metastasis, etc. [5–10]. It also 
reports the dimensions of an ischemic lesion and indirect signs such as cortical grooves asymmetry, structural 
displacements, density increase in the middle cerebral artery in the basal tract, or attenuation coefficients of 
the brain’s parenchyma [11–14]. Initial changes in CT may be present within the first 3 hours after the onset 
of the stroke and this may, or may not, influence the selection of patients for thrombolytic therapy [15,16]. 
More than half of protocol violations are due to a failure to recognize the first signs of infarction on initial CT 
[17]. There is considerable discordance, even among the more experienced physicians, about the recognition 
and quantification of such early CT changes [18], since it is subject to observer variability due to many factors 
[6]. The human eye is able to differentiate a limited number of 20 gray tones, which means that the contrast 
resolution is limited to 4 Hounsfield Units (HU). The window width of 80 HU gives a remarkable maximum 
change of 1-2 gray levels within the first 4 hours of ischemia [19]. Diffuse changes can hardly be 
distinguished in noisy areas due to low contrast brightness, bone artifacts and non-optimal scanning.  

 
Usually the detection of early changes of ischemic stroke in CT is performed manually by a radiologist and 

sometimes with the use of simple software tools such as contrast modification. There are various CADe 
(Computer Assisted Detection) schemes that integrate mathematical models to help identify abnormalities that 
physicians may overlook and, therefore, the software improves the efficiency of disease detection. CADe 
systems for automatic detection of early ischemic changes still need further research and improvement [20]. 
The implementation of an algorithm based on computer vision techniques, as part of the development of a 
CADe, would allow the expert radiologist (and not expert) to perform a detailed search on specific areas of the 
brain where the algorithm has detected the possible presence of a stroke. This would accelerate the beginning 
of the treatment that should be up to 7.3 hours after symptom onset [21]. By obtaining a more timely diagnosis 
and its consequent treatment, a disability and even death of the patient can be avoided, thus reducing 
morbidity and mortality. 

 
Few contributions have been made in the literature of CADe based on computer vision techniques for 

ischemic changes detection. In [22] brain abnormality was inferred from the histogram comparison of 
hemispheres. The method was only tested in chronic infarction cases where the stroke is easily detectable. 
Other methods also use histogram-based comparison, starting from a segmented region of interest (ROI) [13]. 
Because early density changes can hardly be seen, it can be difficult to decide where to establish the ROI. 
Depending on where the ROI is established, the stroke can be overlooked. The comparison of symmetric ROIs 
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does not necessarily mean a strict comparison of the corresponding structures due to partial volume effects, 
cerebrospinal fluid or white matter may affect the attenuation coefficients of a region. 

 
In [23], the data was interpolated to a single volume: a skull-stripping algorithm was used, then normalized 

using an atlas, and segmented into anatomical regions. The voxel densities in the lentiform nucleus and insula 
were compared to the contralateral side using statistical analysis for the detection of hypodensity. A method of 
post-processing improvement with comparison of distributions of attenuation coefficients was proposed in 
[24]. It was based on the analysis of voxels using normalization, segmentation and differentiation of the 
original CT and the resulting filtered image.  

 
Other well-known methods of local contrast enhancement to visualize hidden structures in medical imaging 

are based on the adaptive equalization of the histogram [25,26]. A local window is considered for each 
individual pixel, and then a new intensity value is calculated based on the local histogram. The method does 
not change the overall appearance of the image, which is important for clinical reading since such variations 
usually distract the attention of radiologists. However, shadow-like artifacts appeared in fairly homogeneous 
regions and, in some cases, thin structures were attenuated. These disadvantages were reduced when the 
adaptive equalization of the histogram was performed [27,28]. 

 
This wavelet-based algorithm [29] was proposed for simultaneous automatic visualization of the full range 

of dynamic contrast of CT. Interpretation times were significantly reduced. Post-processing in the wavelet 
domain was less susceptible to artifacts and perturbations, unlike the exact representation of adaptive 
histogram equalization techniques. The diagnostic accuracy, however, was insufficient compared to 
conventional window viewing. Wavelets were also used to detect strokes [19]. The perception of early 
changes was improved by eliminating noise and enhancing local contrast. The method improved the subtlest 
signs of hypodensity, which were often invisible in the standard CT scan. Data processing became more 
effective through the initial segmentation of brain tissue and the extraction of regions susceptible to density 
changes. The sensitivity of stroke diagnosis increased to 56.3% compared with 12.5% of the standard CT 
scan. 

 
Semiautomatic algorithms have also been proposed. In [30] the radiologist defines de ROI by selecting an 

initial seed point (a voxel) that belongs to the structure of interest. It uses intensity-based region growth 
algorithms that exclude ventricles and hemorrhages. The damages are evaluated according to the seed selected 
by the radiologist; however, the technique is too slow since it takes 2 hours per study. 

 
Recently, there have been diverse contributions to the literature of methods that seek to automate the 

ASPECTS protocol. In [31] an automated ASPECTS scoring method was developed as an alternative to 
manual ASPECTS score. Based on the brain density shift between contralateral brain areas, the method 
quantifies subtle early ischemic changes. The method matched with manual consensus scoring in 73% of the 
cases without bias or outliers, in contrast with individual observers. A new software, the e-ASPECTS, was 
proposed for the automatic detection of acute ischemic stroke. The method segments the regions using texture 
information and an atlas. It generates a score and marks the regions that contain the damage. It offers a direct 
score based on the image in order to indicate or discard thrombolytic therapy. The e-ASPECTS has been 
evaluated in [32] and in [33] concluding that it is non-inferior to the ASPECTS results scored by three 
neuroradiologists on NCCT.  
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Because the identification of early ischemic changes in acute strokes is still very subjective, we must 
continue to focus on the development of diagnostic tools that improve the perception of subtle changes and 
that allow stroke-specialists to determine an early diagnosis with greater precision. 

 
Brain tissue segmentation (BTS) plays a key role in the study of various abnormalities, brain development 

and evaluation of the progress of treatment [34]. Cerebrospinal fluid (CSF), white matter (WM) and gray 
matter (GM) are the basic tissue types in BTS. Subsections of the image with specific characteristics are 
labeled with the aim of achieving homogeneous partitions representing CSF, WM and GM. Several 
segmentation techniques have been proposed in the literature for BTS, mostly designed for their use in 
magnetic resonance imaging (MRI) [35–37]. In CT the contributions have been limited to the segmentation of 
pathologies and brain parenchyma excluding the separation of tissues [38–40]. 

 
The inherent difficulty in segmenting and quantifying the various brain tissues has increased the use of soft 

computing techniques in BTS. Fuzzy logic as a part of soft computing has the potential to combine human 
heuristics in computer-aided decision making, it opens the door to construction of better models of reality and 
involves exploitation of a tolerance for imprecision [41]. Fuzzy logic has been applied in all disciplines of 
medicine in some form of classification, detection, segmentation and control, and recently its applicability in 
neurosciences, especially in brain tissue segmentation, is also increasing [34,42,43]. 

 
This research proposes a new computer vision method that identifies changes in parenchymal density in 

Non-Contrast Computer Tomography for the detection of early stages of ischemic stroke. Based on the 
analysis of cerebral symmetry, the method identifies non-pathological and cases with abnormalities. The 
identification of normal tissues (CSF, WM and GM), using fuzzy logic techniques, simplifies the detection of 
parenchymal changes of ischemic stroke.  

2. Methodology 

Figure 1 outlines the proposed methodology. Each step is then presented in the following sections. 
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Fig. 1. General outline of the methodology. 

2.1. Pre-processing 

In this first stage of the methodology it was necessary to carry out the image standardization through three 
steps: the conversion of the gray scale to HU, since it is the main characterization feature in clinical practice; 
then, the implementation of previously developed algorithms [38] for skull stripping and to define the ROI 
(the brain parenchyma), and finally the delimitation of the Mid Sagittal Plane (MSP) for the symmetry 
analysis. 

2.2. Feature extraction 

At this stage, subsets of non-pathological brain tissue (from normal subjects) were selected with the aim of 
analyzing the HU characteristics [44]. These subsets were extracted from specific anatomical regions where 
each tissue is denser. For WM, the samples were obtained from the region of the knee of the corpus callosum 
and semioval centers; for gray matter, of the head and body of the caudate nucleus; and the ventricles for 
CSF. The training set was composed of 640 tissue samples: 4 samples (sub images of at least 20 x 20 pixels) 
of each tissue using 4 slices (1 slice per sample) of 40 cases from 3 CT scanners. Cases were collected from 
two hospitals located in Cd. Juárez, México. Their use in this research was approved by a bioethics 
committee. The samples were validated under the guidance of two expert neuroradiologists (7 years of 
experience) and according to the literature [1,4]. 

Table 1. Values in Hounsfield Units of brain tissues in different slice thicknesses (in mm). 

Tissue thickness min max avg 

CSF 

1 0 14 6.43 

1.5 0 14 6.13 

3 0 14 5.28 

WM 

1 17 46 29.39 

1.5 20 36 29.85 

3 20 35 29.46 

GM 

1 28 64 46.43 

1.5 31 59 44.54 

3 33 57 43.8 

 
The training set was arranged into three different vectors –CSF, WM and GM– and their corresponding 

histograms were obtained (Figure 2). A membership function associated for each of the tissues, μCSF, μWM 
and μGM, was implemented using Equation (1). 
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Fig. 2. Histograms of CSF, WM and GM image training set 1.5 mm thickness, and their corresponding membership functions. 

                       
  

 
         

  
   (1) 

 
where C is the characteristic to be evaluated in population P. cij is the value taken by C when it is evaluated 

in pixel pij. Lcdf(cij) and Rcdf(cij) are the values of the left and right cumulative distribution functions (cdfs) 
associated with the pixel pij for the characteristic C. a1 and a2 are parameters that must be adjusted according 
to the overlap between the populations to be evaluated, increasing their value proportionally to their overlap. 
The advantage of considering the cdfs is twofold: on the one hand, they can be used to better cover the data, 
especially in the case of asymmetric distributions; and on the other hand, provide better classification results 
when the histograms of datasets overlap [45,46]. 

2.3. Detection of abnormality 

The analysis of brain symmetry to detect abnormalities has been the basis of several works in the literature. 
It is a rapid method that locates a region of abnormality. The method takes advantage of the fact that a normal 
brain structure is quasi-symmetrical (Figure 3a), the hemispheres are divided by an axis of symmetry and 
abnormalities typically disrupt this symmetry (Figure 3b). 
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Fig. 3. a) Normalized histograms of left and right hemispheres of a non-pathological case. b). Normalized histograms of left and right 
hemispheres of a stroke case. 

The analysis was performed using Jeffrey's divergence coefficient according to Equation (2). Divergence is 
a weaker notion than distance in mathematics. From the different divergence measures in the literature, 
perhaps the most prominent includes the Kullback-Leibler divergence (KLD). A big inconvenience of the 
KLD, especially in the context of practical applications, is its non-symmetricity [47]. Jeffrey’s divergence 
(JD) is a simple way of making KLD symmetric; it is numerically stable and robust with respect to noise and 
the size of histogram bins [48]. JD and KLD are an empirical measure of the distributions similarity based on 
their relative entropy. Given two histograms P and Q, with pi and qi denoting the histogram entries, the Jeffrey 
divergence is defined as: 

                
  
  

      
  
  

   (2) 

where    
     

 
. P and Q are the histograms of HU data of the left and right hemispheres, respectively. The 

histograms are normalized so that the analysis is performed using the histogram signature and notwithstanding 
the number of pixels in each tissue. This allows diminishing the effect of the property of quasi-symmetry of 
the brain.  

 
We analyzed 40 non-pathological training cases where it was observed that regardless the type of tissue 

(represented by the distribution of the histograms in HU), no case presented a divergence greater than 0.35 
(Figure 4). A threshold t = 0.5 could be established according to the maximum divergence of all cases, m, plus 
twice the standard deviation of the maximum divergences of the cases. We denote the abnormality of a case C 
according to: 

                        
               

   (3) 
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Fig. 4. Jeffrey divergence of hemispheres in non-pathological cases. 

 

2.4. Definition of ROIs 

All cases that present abnormalities are taken to a second level of classification by a contralateral analysis 
of brain regions. The brain volume is divided into 8 regions (Figure 5) by 4 edges that cross the entire volume 
through the center (recalling that the brain was aligned to the center and the patient's rotation angles were 
corrected in the preprocessing stage). 

 

 

Fig. 5. Proposed delimitation of brain regions for contralateral analysis. 
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2.5. Detection of parenchymal changes in abnormal regions 

Once the regions are defined, each region of one hemisphere is evaluated against its counterpart on the 
other hemisphere. The symmetry analysis is performed again using the Jeffrey divergence in order to identify 
abnormalities (Equation 1). If the condition of Equation 3 is fulfilled, all voxels within the abnormal region 
are analyzed. 

 
The analysis is feasible because normal brain tissues were characterized by membership functions in HU. 

A voxel vij is considered WM if μWM (vij)> μCSF (vij) and μWM (vij)> μGM (vij). A voxel is GM if μGM (vij)> 
μCSF (vij) and μGM (vij)> μWM (vij). Finally, a voxel is CSF if μCSF (vij)> μWM (vij) and μCSF (vij)> μGM 
(vij). The classification will result in a membership degree with values between 0 and 1 and will be 
represented visually in a range of 256 gray levels, as shown in Figure 6. 

 

 
Fig. 6. Palette of gray levels representing the classification membership degrees. 

3. Results 

The following sections present and discuss the results of each step of the proposed methodology. 

3.1. Feature extraction in HU 

The extracted characteristics were evaluated by the quantitative classification of synthetic images 
generated from real tissues. Tissue segments were obtained from cases that were not used in the training 
phase. Figure 7 shows two examples of synthetic images and their corresponding classification using black for 
CSF, gray for GM and white for WM. 
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Fig. 7. Examples of synthetic images (left) and their classification (right). 

Figure 8 contains the results of TPR and SPC measurements of the 27 synthetic images generated with a 
mean of 95 and 94, respectively. Some misclassifications were presented in the HU, in which the WM 
overlaps with GM (this overlap can be easily observed in the histograms of Figure 2). 

 

 
Fig. 8. Results of classification of tissues in synthetic images. Some misclassifications were presented in the HU, in which the WM 
overlaps with GM. 

3.2. Detection of an abnormality 

In order to validate the detection, a set of tests conformed by 54 non-pathological cases (Figure 9) and 20 
stroke cases was used. 
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Fig. 9. Examples of non-pathological cases (a-b) and their corresponding divergence measurements (c-d). 

It can be observed that the divergence values are greater in the stroke cases (Figure 11), exceeding the 
threshold t, than in non-pathological cases (Figure 10). It is important to emphasize that the analyzed 
pathological cases are set in different stages: chronic, sub-acute, acute and hyperacute. The evaluation of these 
experiments resulted in a sensitivity of 91% and specificity of 100%. 

 
Fig. 10. Detection of abnormality of test cases: non-pathological patients. All cases are below threshold t. 
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Fig. 11. Detection of abnormality of test cases: stroke patients. 

3.3. Detection of parenchymal changes in abnormal regions 

After discarding all the cases identified as normal, we proceeded to evaluate the different regions of 
interest proposed in this study, measuring 4 divergences per case. Table 2 presents the stage and location of 
the stroke, the divergence values in the four regions, and the overall predictive value, or diagnostic efficiency. 

 

Table 2. Stage and location of the stroke, divergence values, and overall accuracy of abnormal cases. 

   
max Jdiv per region 

 # Stage Location 1 2 3 4 ACC 

1 sub Genu and posterior limb of 
the left internal capsule 

7.81 6.32 8.9 4.35 
100 

TP TP TP TP 

2 sub Genu and posterior limb of 
the left internal capsule 

11.89 0.55 17 3.81 
100 

TP TP TP TP 

3 sub Left MCA territory 
1.32 4.06 4.06 4.48 

100 
TP TP TP TP 

4 sub Posterior limb of the left 
internal capsule 

4.76 0.29 0.12 0.55 
100 

TP TN TN TN 

5 sub Ventral surface of the left 
frontal lobe 

0.64 3.18 1.19 0.24 
100 

TP TP TP TN 

6 chro Posterior limb of the left 
internal capsule 

0.49 5.79 0.5 0.37 
100 

TN TP TN TN 

7 sub MCA and PCA territory 
0.93 0.61 4.77 0.47 

100 
TP TP TP TN 

8 sub Bilateral occipital PCA 9.58 3.20 9.13 5.50 100 
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territory TP TP TP TP 

9 chro Left frontal recess 
0.16 0.02 0.04 0.00 

80 
TN FN TN TN 

10 sub Lateral aspect of the left 
cerebral hemisphere 

7.92 9.56 3.42 0.70 
100 

TP TP TP TP 

11 sub Left paracentral lobule 
0.51 0.26 0.47 0.20 

100 
TP TN TN TN 

12 chro Posterior limb of the left 
internal capsule 

8.80 5.11 6.69 1.51 
100 

TN TP TN TN 

13 sub Supra / infratentorial 
0.08 0.14 1.29 1.36 

100 
TN TN TP TP 

14 acute Left centrum semiovale 
4.65 1.28 3.91 1.02 

100 
TP TP TP TP 

15 hyper Cortico subcortical 
0.5 0.38 0.83 1.31 

100 
TN TN TP TP 

16 acute Right MCA territory 
1.23 0.45 1.24 0.22 

80 
TP FN TP TN 

17 hyper Ventral surface of left 
occipital and temporal lobe 

1 0.14 0.19 1.46 
100 

TP TN TN TP 

18 hyper Left globus pallidus 
0.77 0.24 1.04 0.17 

100 
TP TN TP TN 

19 acute Left paracentral lobule 
1.21 1.68 0.30 0.06 

100 
TP TP TN TN 

20 hyper Ventral surface of the left 
frontal lobe 

1.51 0.19 0.10 0.10 
100 

TP TN TN TN 

Average 99 
 
In the twenty diagnosed cases, a total of 80 regions were evaluated, detecting abnormalities in 47 of 49 

regions that were previously diagnosed as abnormal. In cases 9 and 16, in zone 2, the lesion appeared in less 
than 10% of the voxels, therefore this area was detected as normal. To avoid these false negatives, instead of 
carrying out the detection within geometrically defined regions, it will be necessary to consider regions 
delimited by the vascular territories, so that the lesion is not arbitrarily divided into multiple areas. 

 
Figure 12 shows an example of the divergence measurements of the 4 contralateral regions. Once the 

regions in which divergence exceeds t are detected (regions 2 and 3), the membership to CSF, WM and GM 
classes is evaluated on each voxel. Figure 13 illustrates the classification of one of the slices of zone 2 (a). 
The membership degrees of pixels to GM class on the left and right hemispheres are shown in (b.1) and (c.1), 
respectively; (b.2) and (c.2) to WM, and (b.3) and (c.3) to CSF. When comparing (b.1) and (c.1) a greater 
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number of pixels classified to GM in the left hemisphere are observed (b.1). There should be a similar number 
of pixels classified as GM in (c.1), which may be indicative of tissue hypodensity in the right hemisphere. 
This provokes a greater number of pixels classified as WM in the right hemisphere (c.2). 

 

 

Fig. 12. Example of symmetry evaluation by regions in an abnormal case. 
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Fig. 13. a) Example of one of the slices used to classify the areas of interest. b) right hemisphere, c) left hemisphere. 1) Classification of 
GM. 2) WM. 3) CSF. 

The case shown in Figures 12 and 13 was diagnosed as a hyperacute ischemic stroke. NCCT was acquired 
within the first three hours after the onset of the stroke. Therefore, the identification of the stroke was 
questionable, requiring a diffusion-weighted MRI. The study was performed two hours after NCCT, 
confirming the diagnosis (Figure 14). The abnormalities detected by the method occurred at the same location 
of the affected area in MRI. It is necessary to consider that the MRI area may be larger due to the higher MRI 
resolution to detect ischemic changes using diffusion and the time between the two studies. 

 

 
Fig. 14. Study by image for the detection of ischemic stroke of the same patient a) modality in NCCT, b) modality in diffusion weighted 
MRI two hours after the acquisition of the CT study. 
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4. Discussion 

The detection of an ischemic stroke is performed by identifying atypical values in regions in which healthy 
tissues are expected because it is difficult to characterize parenchymal changes of an ischemic stroke from a 
reduced sample of previously diagnosed cases, specially hyperacute cases that are generally not diagnosed. It 
is also important to consider that HU will vary according to the type and area of the stroke and the elapsed 
time. For example, it may be unchallenging to detect a chronic ischemic stroke regardless of the tissue in 
which it is located because its values in HU do not overlap with the HU of healthy tissues, so a membership 
function adjusted to that type of infarction is feasible but has minimal clinical relevance since these cases are 
easily diagnosed because their difference in density is remarkable. The problem of adjusting a membership 
function for cases of hyperacute ischemic stroke is that its levels in HU change according to the affected 
tissue, which means that, if it affects the GM, the detected pixels will tend to resemble WM. Because the 
diagnoses of specialists are variable regarding this type of stroke, it was considered helpful to the specialist to 
detect a region of interest and to identify the tissues separately in order to provide a better differentiation 
between hemispheres, which can lead to a timely diagnosis of ischemic stroke.  

 
In addition to the histogram signatures where the expert can quantitatively verify the levels in HU in which 

the histogram changes, along with the divergence values, he will be able to perform a qualitative analysis in 
the resulting images of the classification to verify if there is indeed a significant disparity between the 
contralateral regions, and thus be able to observe changes between the tissues more easily. The expert, having 
this information, could determine if it is either an ischemic stroke, another pathology, or a false positive. In 
this way, the method can reduce the search area to accelerate the diagnosis and initiate a more timely 
treatment, or to discard the presence of parenchymal changes of ischemic stroke. 

 

5. Conclusions 

The main objective of this article was to provide a new automated, early detection of parenchymal changes 
of ischemic stroke in NCCT images. The abnormality was detected according to a symmetry analysis between 
the left and right hemispheres of the brain. The hemispheres of training cases were compared using the Jeffrey 
divergence, establishing a threshold to determine abnormality when it was exceeded. In our analysis focused 
on real images, our approach demonstrated the ability to correctly classify all the cases that were evaluated as 
can be inferred from its excellent sensitivity and specificity.  

 
The different abnormal regions were evaluated and the presence of parenchymal changes of ischemic 

stroke was detected by the identification of tissues using fuzzy logic techniques. In our approach, the design 
of the membership functions took the advantage of using samples of non-pathological tissues (CSF, WM, and 
GM) that allowed their characterization and adjustment. We obtained a very high performance (an average 
sensitivity of 95% and a specificity of 94%) in the quantitative evaluation using real tissue images.  

 
Based on the obtained results, this new method can be extended to a CADe that could reduce detection 

time, since the non-pathological cases are discarded. Because of abnormal regions are identified, the expert 
can prioritize the examination to a previously delimited region, decreasing the diagnostic time. The 
identification of tissues allows a better visualization of the region to be evaluated, helping to discard or 
confirm a stroke.  
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Finally, the excellent results showed that the proposed approach, could be extended to the analysis of other 
pathologies or to be applied jointly with cerebral atlases in order to help in the delineation of the different 
cerebral regions.  
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