8 research outputs found

    Conception of new contrast agent based of assembly of iron oxide nanoparticles for magnetic resonance imaging : from nanoparticle synthesis to assembly

    No full text
    L'imagerie par résonance magnétique (IRM) est largement utilisée dans le milieu médical pour l'imagerie des tissus mous. Afin d'obtenir des images de meilleures qualité, les hÎpitaux s'équipent d'IRM avec des champs de plus en plus intenses. Les agents de contraste à base de nanoparticules de fer sont trÚs prometteurs pour l'imagerie à haut champ. En effet, au contraire des agents de contraste à base de gadolinium, ils ne perdent pas leur efficacité à haut champ. Plusieurs paramÚtres sont à prendre en compte afin d'obtenir des agents de contrastes plus efficaces en IRM : tout d'abord, les propriétés magnétiques des nanoparticules d'oxydes de fer. Celles-ci doivent avoir des aimantations importantes. Ensuite, les nanoparticules agrégées sont plus efficaces que les nanoparticules individuelles. Pour finir, la présence d'une couche plus ou moins imperméable à l'eau ainsi que son épaisseur vont influencer l'efficacité de l'agent de contraste. Ce mémoire de thÚse présente la conception de nouveaux agents de contraste à base de nanoparticules d'oxyde de fer, depuis l'optimisation de la synthÚse afin d'obtenir les nanoparticules ayant les propriétés magnétiques les plus intéressantes pour l'IRM, jusqu'à l'assemblage de ces nanoparticules afin d'améliorer leur efficacité en IRM. La premiÚre partie de ce travail est donc consacrée à la synthÚse de nanoparticules d'oxyde de fer. Une approche organométallique a été choisit car elle permet d'obtenir des nanoparticules de taille contrÎlée. Nous montrons dans cette partie que les conditions de synthÚse ont une grande influence sur la structure cristalline des nanoparticules synthétisées ainsi que sur leurs propriétés magnétiques. La deuxiÚme partie de ce travail est consacrée à la réalisation d'agrégats de nanoparticules de taille contrÎlée. L'agrégation des nanoparticules est réalisée par effet solvophobe en ajoutant de l'eau sur une solution de nanoparticules hydrophobes dans le THF. Nous montrons dans cette partie que la cinétique d'agrégation dépend de la quantité d'eau ajoutée. Les agrégats sont ensuite stabilisés par l'ajout d'un polymÚre et nous montrons que la morphologie et la taille des agrégats aprÚs leur transfert dans l'eau dépendent de la masse molaire et de la nature du polymÚre utilisé. La troisiÚme partie de ce travail est consacrée à l'évaluation de l'efficacité des agrégats de nanoparticules en tant qu'agent de contraste. Les agrégats testés se sont révélés prometteurs, et des efficacités supérieures à celles d'agents de contraste commerciaux ont été obtenues.The magnetic resonance imaging (MRI) is widely used in the medical field for soft tissue imaging. In order to obtain images of better quality, hospitals equip themselves with MRI of higher fields. Iron-based nanoparticle contrast agents are very promising for imaging at high field. Indeed, unlike the gadolinium contrast agents, they do not lose their effeciency at high field. Several parameters must be taken into account to achieve more effective contrast agents in MRI: first, the magnetic properties of iron oxide nanoparticles. They must have significant magnetization. Then, aggregated nanoparticles are more effective than individual nanoparticles. Finally, the presence of a more or less hydrophylic layer and its thickness will influence the effeciencys of the contrast agent.This thesis presents the design of new contrast agents based on iron oxide nanoparticles assembly, since the optimization of the synthesis to obtain nanoparticles with the most interesting magnetic properties for MRI up assembly of nanoparticles to improve their effectiveness in MRI.The first part of this work is devoted to the synthesis of iron oxide nanoparticles. An organometallic approach was chosen because it allows to obtain nanoparticles of controlled size. We show in this part of the synthesis conditions have a great influence on the crystal structure of the synthesized nanoparticles and their magnetic properties.The second part of this work is dedicated to the production of controlled size aggregates of nanoparticles. The aggregation of nanoparticles is performed by solvophobic effect by adding water to a solution of hydrophobic nanoparticles in THF. We show in this section that the kinetics of aggregation depends on the amount of water added. The aggregates are then stabilized by the addition of a polymer and show that the morphology and size of the aggregates after transfer into the water depend on the molecular weight and nature of the polymer used.The third part of this work is devoted to the evaluation of the efficiency of nanoparticle aggregates as a contrast agent. The aggregates tested have shown promise, and efficiencies higher than commercial contrast agents were obtained

    Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line

    No full text
    International audienceSilica (SiO2) in its nanosized form is now used in food applications although the potential risks for human health need to be evaluated in further detail. In the current study, the uptake of 15 and 55 nm colloidal SiO2 NPs in the human intestinal Caco-2 cell line was investigated by transmission electron microscopy. The ability of these NPs to induce cytotoxicity (XTT viability test), genotoxicity (ÎłH2Ax and micronucleus assay), apoptosis (caspase 3), oxidative stress (oxidation of 2,7-dichlorodihydrofluorescein diacetate probe) and proinflammatory effects (interleukin IL-8 secretion) was evaluated. Quartz DQ12 was used as particle control. XTT and cytokinesis-block micronucleus assays revealed size- and concentration-dependent effects on cell death and chromosome damage following exposure to SiO2 nanoparticles, concomitantly with generation of reactive oxygen species (ROS), SiO2-15 nm particles being the most potent. In the same way, an increased IL-8 secretion was only observed with SiO2-15 nm at the highest tested dose (32 ÎŒg/ml). TEM images showed that both NPs were localized within the cytoplasm but did not enter the nucleus. SiO2-15 nm, and to a lower extent SiO2-55 nm, exerted toxic effects in Caco-2 cells. The observed genotoxic effects of these NPs are likely to be mediated through oxidative stress rather than a direct interaction with the DNA. Altogether, our results indicate that exposure to SiO2 NPs may induce potential adverse effects on the intestinal epithelium in vivo

    Inside Cover: Simple Engineering of Polymer-Nanoparticle Hybrid Nanocapsules (ChemNanoMat 8/2016)

    No full text
    International audienceIn the Communication featured on the Inside Cover, the authors use the unsuspected presence of nanodroplets (∌100 nm) in water/THF mixtures to template the formation of hybrid nanocapsules, “hybridosomes”, with a shell consisting of a crosslinked network of particles and polymers. Magnetic hybridosomes prepared from iron oxide nanoparticles enhance MRI contrast, enabling the imaging of tumor areas at low dose. This universal process can be applied to various types of inorganic nanoparticles (metallic, semi-conducting, etc.) and to mixtures, opening the way to highly multifunctional nanocapsules. More information can be found in the Communication by M. L. Kahn, F. Gauffre et al. on page 796 in Issue 8, 2016 (DOI: 10.1002/cnma.201600155)

    Synthesis of metal oxide nanoparticles by organometallic approach: from molecule to devices

    No full text
    International audienceThe synthesis of metal oxide nanoparticles (NPs) from organometallic precursor is a powerful approach to access nanomaterials of controllable size, shape, and surface; parameters of prime importance for their applications. Our recent efforts in this field is presented

    Reorganization of a photosensitive carbo-benzene layer in a triptych nanocatalyst with enhancement of the photocatalytic hydrogen production from water

    No full text
    International audienceThe preparation of a triptych nanomaterial made of TiO2 nanoparticles as semiconductor, Ag plasmonic nanoparticles and a carbo-benzene macrocyclic molecule as photosensitizer is described, and used to produce hydrogen by photo-reduction of pure deionized water under 2.2 bar argon pressure without any electrical input. Silver nanoparticles (~5 nm) are grafted onto the surface of commercial TiO2 nanoparticles (~23 nm) by a photo-deposition process using an original silver amidinate precursor. The thickness of the photosensitive layer (2 nm), which completes the assembly, plays a crucial role in the efficiency and robustness of the triptych nanocatalyst. Thanks to the organic layer reorganization during the first ~24 h of irradiation, it leads to an enhancement of the hydrogen production rate up to 5 times. The amount of silver and carbo-benzene are optimized, along with the mass concentration of nanocatalyst in water and the pH of the aqueous medium, to allow reaching a hydrogen production rate of 22.1 Όmol·h−1·gphotocatalyst−1
    corecore