88 research outputs found

    Trabectedin and its potential in the treatment of soft tissue sarcoma

    Get PDF
    Trabectedin is a new marine-derived compound that binds the DNA minor groove and interacts with proteins of the DNA repair machinery. Phase I trials have established the standard regimen as 1500 μg/m2 24-hour continuous infusion repeated every 3 weeks. Several phase II trials have shown response in 5%–10% of unselected patients with soft tissue sarcoma failing prior chemotherapy and disease stabilisation in 30%–40%. Furthermore, prolonged disease control has been described in 15%–20% of patients. Toxicities are mainly haematological and hepatic with grade 3–4 neutropenia and thrombocytopenia observed in approximately 50% and 20% of patients respectively, and grade 3–4 elevation of liver enzymes observed in 35%–50% of patients treated with trabectedin. Current research focuses on the identification of predictive factors for patients with soft tissue sarcoma treated with trabectedin

    Neoadjuvant imatinib in patients with locally advanced non metastatic GIST in the prospective BFR14 trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of surgery in the management of patients with advanced gastrointestinal stromal tumors (GIST) in the era of imatinib mesylate (IM) remains debated. We analyzed the outcome of patients with non metastatic locally advanced primary GIST treated with IM within the prospective BFR14 phase III trial.</p> <p>Methods</p> <p>The database of the BFR14 trial was searched for patients with no metastasis at time of inclusion. Patients treated for recurrent disease were excluded. Twenty-five of 434 patients met these criteria.</p> <p>Results</p> <p>Fifteen of 25 patients (60%) had a partial response to IM. Nine of the 25 patients (36%) underwent surgical resection of their primary tumor after a median of 7.3 months of IM treatment (range 3.4-12.0). Per protocol patients received continuous IM treatment in the post resection period, in an adjuvant setting. With a median follow-up of 53.5 months, there was a significant improvement in progression-free survival (PFS) and overall survival (OS) for patients who underwent surgical resection <it>versus </it>those who did not (median not reached <it>vs </it>23.6 months, p = 0.0318 for PFS and median not reached <it>vs </it>42.2 months, p = 0.0217 for OS). In the group of patients who underwent resection followed by IM, the 3-year PFS and OS rates were 67% and 89% respectively</p> <p>Conclusions</p> <p>Following neoadjuvant IM for non metastatic locally advanced GIST 9 of 25 patients (36%) were selected for resection of the primary tumor. OS and PFS figures were close to those of localised intermediate or high risk GIST (70% at 5 years) in the subgroup of operated patients, while the outcome of the non-operated subgroup was similar to that of metastatic GIST.</p

    combined pik3ca and fgfr inhibition with alpelisib and infigratinib in patients with pik3ca mutant solid tumors with or without fgfr alterations

    Get PDF
    PURPOSE Concurrent PIK3CA mutations and fibroblast growth factor receptor (FGFR) alterations occur in multiple cancer types, including estrogen receptor–positive breast cancer, bladder cancer, and endometrial cancer. In this first-in-human combination trial, we explored safety and preliminary efficacy of combining the PI3Kα selective inhibitor alpelisib with the FGFR1-4 selective inhibitor infigratinib. PATIENTS AND METHODS Patients with PIK3CA-mutant advanced solid tumors, with or without FGFR1-3 alterations, were enrolled in the dose escalation or one of three molecular-defined dose-expansion cohorts. The primary end point was the maximum tolerated dose. Secondary end points included safety, pharmacokinetics, and response. Archival tumor samples were sequenced to explore genomic correlates of response. RESULTS In combination, both agents were escalated to full, single-agent recommended doses (alpelisib, 300 mg per day continuously; infigratinib, 125 mg per day 3 weeks on followed by 1 week off). The toxicity profile of the combination was consistent with the established safety profile of each agent, although 71% of all patients required at least one treatment interruption or dose reduction. Molecularly selected dose expansions in breast cancer and other solid tumors harboring PIK3CA mutations, alone or in combination with FGFR alterations, identified sporadic responses, predominately in tumor types and genotypes previously defined to have sensitivity to these agents. CONCLUSION The combination of alpelisib and infigratinib can be administered at full single-agent doses, although the high rate of dose interruption or reduction suggests long-term tolerability may be challenging. In exploratory signal-seeking cohorts of patients harboring dual PIK3CA and FGFR1-3 alterations, no clear evidence of synergistic activity was observed

    First-in-human phase 1 study of budigalimab, an anti-PD-1 inhibitor, in patients with non-small cell lung cancer and head and neck squamous cell carcinoma

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Background: Budigalimab is a humanized, recombinant immunoglobulin G1 monoclonal antibody targeting programmed cell death protein 1 (PD-1). We present the safety, efficacy, pharmacokinetic (PK), and pharmacodynamic data from patients enrolled in the head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) expansion cohorts of the phase 1 first-in-human study of budigalimab monotherapy (NCT03000257; registered 15 December 2016). Patients and methods: Patients with recurrent/metastatic HNSCC or locally advanced/metastatic NSCLC naive to PD-1/PD-1-ligand inhibitors were enrolled; patients were not selected on the basis of oncogene driver mutations or PD-L1 status. Budigalimab was administered at 250 mg intravenously Q2W or 500 mg intravenously Q4W until disease progression/unacceptable toxicity. The primary endpoints were safety and PK; the secondary endpoint was efficacy. Exploratory endpoints included biomarker assessments. Results: In total, 81 patients were enrolled (HNSCC: N = 41 [PD-L1 positive: n = 19]; NSCLC: N = 40 [PD-L1 positive: n = 16]); median treatment duration was 72 days (range, 1–617) and 71 days (range, 1–490) for the HNSCC and NSCLC cohorts, respectively. The most frequent grade ≥ 3 treatment-emergent adverse event was anemia (HNSCC: n = 9, 22%; NSCLC: n = 5, 13%). Both dosing regimens had comparable drug exposure and increased interferon gamma-induced chemokines, monokine induced by gamma interferon, and interferon-gamma-inducible protein 10. Objective response rates were 13% (90% CI, 5.1–24.5) in the HNSCC cohort and 19% (90% CI, 9.2–32.6) in the NSCLC cohort. Median progression-free survival was 3.6 months (95% CI, 1.7–4.7) and 1.9 months (95% CI, 1.7–3.7) in the HNSCC and NSCLC cohorts. Conclusions: The safety, efficacy and biomarker profiles of budigalimab are similar to other PD-1 inhibitors. Development of budigalimab in combination with novel anticancer agents is ongoing.Peer reviewe

    A Phase 2, Multicenter, Open-Label Study of Anti-Lag-3 Ieramilimab in Combination With Anti-Pd-1 Spartalizumab in Patients With Advanced Solid Malignancies

    Get PDF
    Ieramilimab, a humanized anti-LAG-3 monoclonal antibody, was well tolerated in combination with the anti-PD-1 antibody spartalizumab in a phase 1 study. This phase 2 study aimed to further investigate the efficacy and safety of combination treatment in patients with selected advanced (locally advanced or metastatic) solid malignancies. Eligible patients with non-small cell lung cancer (NSCLC), melanoma, renal cell carcinoma (RCC), mesothelioma, and triple-negative breast cancer (TNBC) were grouped depending on prior anti-PD-1/L1 therapy (anti-PD-1/L1 naive or anti-PD-1/L1 pretreated). Patients received ieramilimab (400 mg) followed by spartalizumab (300 mg) every 3 weeks. The primary endpoint was objective response rate (ORR), along with safety, pharmacokinetics, and biomarker assessments. Of 235 patients, 142 were naive to anti-PD-1/L1 and 93 were pretreated with anti-PD-1/L1 antibodies. Durable responses (\u3e24 months) were seen across all indications for patients naive to anti-PD-1/L1 and in melanoma and RCC patients pretreated with anti-PD1/L1. The most frequent study drug-related AEs were pruritus (15.5%), fatigue (10.6%), and rash (10.6%) in patients naive to anti-PD-1/L1 and fatigue (18.3%), rash (14.0%), and nausea (10.8%) in anti-PD-1/L1 pretreated patients. Biomarker assessment indicated higher expression of T-cell-inflamed gene signature at baseline among responding patients. Response to treatment was durable (\u3e24 months) in some patients across all enrolled indications, and safety findings were in accordance with previous and current studies exploring LAG-3/PD-1 blockade

    Prognostic value of the expression of C-Chemokine Receptor 6 and 7 and their ligands in non-metastatic breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemokines and chemokine receptors are major actors of leukocytes trafficking and some have been shown to play an important role in cancer metastasis. Chemokines CCL19, CCL20 and CCL21 and their receptors CCR6 and CCR7, were assessed as potential biomarkers of metastatic dissemination in primary breast cancer.</p> <p>Methods</p> <p>Biomarker expression levels were evaluated using immunohistochemistry on paraffin-embedded tissue sections of breast cancer (n = 207).</p> <p>Results</p> <p>CCR6 was expressed by tumor cells in 35% of cases. CCR7 was expressed by spindle shaped stromal cells in 43% of cases but not by tumor cells in this series. CCL19 was the only chemokine found expressed in a significant number of breast cancers and was expressed by both tumor cells and dendritic cells (DC). CCR6, CCL19 and CCR7 expression correlated with histologic features of aggressive disease. CCR6 expression was associated with shorter relapse-free survival (RFS) in univariate and but not in multivariate analysis (p = 0.0316 and 0.055 respectively), and was not associated with shorter overall survival (OS). Expression of CCR7 was not significantly associated with shorter RFS or OS. The presence of CCL19-expressing DC was associated with shorter RFS in univariate and multivariate analysis (p = 0.042 and 0.020 respectively) but not with shorter OS.</p> <p>Conclusion</p> <p>These results suggest a contribution of CCR6 expression on tumor cells and CCL19-expressing DC in breast cancer dissemination. In our series, unlike what was previously published, CCR7 was exclusively expressed on stromal cells and was not associated with survival.</p

    Incidence of Sarcoma Histotypes and Molecular Subtypes in a Prospective Epidemiological Study with Central Pathology Review and Molecular Testing

    Get PDF
    International audienceBACKGROUND: The exact overall incidence of sarcoma and sarcoma subtypes is not known. The objective of the present population-based study was to determine this incidence in a European region (Rhone-Alpes) of six million inhabitants, based on a central pathological review of the cases. METHODOLOGY/PRINCIPAL FINDINGS: From March 2005 to February 2007, pathology reports and tumor blocks were prospectively collected from the 158 pathologists of the Rhone-Alpes region. All diagnosed or suspected cases of sarcoma were collected, reviewed centrally, examined for molecular alterations and classified according to the 2002 World Health Organization classification. Of the 1287 patients screened during the study period, 748 met the criteria for inclusion in the study. The overall crude and world age-standardized incidence rates were respectively 6.2 and 4.8 per 100,000/year. Incidence rates for soft tissue, visceral and bone sarcomas were respectively 3.6, 2.0 and 0.6 per 100,000. The most frequent histological subtypes were gastrointestinal stromal tumor (18%; 1.1/100,000), unclassified sarcoma (16%; 1/100,000), liposarcoma (15%; 0.9/100,000) and leiomyosarcoma (11%; 0.7/100,000). CONCLUSIONS/SIGNIFICANCE: The observed incidence of sarcomas was higher than expected. This study is the first detailed investigation of the crude incidence of histological and molecular subtypes of sarcomas
    corecore