16 research outputs found

    Adaptability and reproducibility of a memory disruption rTMS protocol in the PharmaCog IMI European project

    Get PDF
    Transcranial magnetic stimulation (TMS) can interfere with cognitive processes, such as transiently impairing memory. As part of a multi-center European project, we investigated the adaptability and reproducibility of a previously published TMS memory interfering protocol in two centers using EEG or fMRI scenarios. Participants were invited to attend three experimental sessions on different days, with sham repetitive TMS (rTMS) applied on day 1 and real rTMS on days 2 and 3. Sixty-eight healthy young men were included. On each experimental day, volunteers were instructed to remember visual pictures while receiving neuronavigated rTMS trains (20 Hz, 900 ms) during picture encoding at the left dorsolateral prefrontal cortex (L-DLPFC) and the vertex. Mixed ANOVA model analyses were performed. rTMS to the L-DLPFC significantly disrupted recognition memory on experimental day 2. No differences were found between centers or between fMRI and EEG recordings. Subjects with lower baseline memory performances were more susceptible to TMS disruption. No stability of TMS-induced memory interference could be demonstrated on day 3. Our data suggests that adapted cognitive rTMS protocols can be implemented in multi-center studies incorporating standardized experimental procedures. However, our center and modality effects analyses lacked sufficient statistical power, hence highlighting the need to conduct further studies with larger samples. In addition, inter and intra-subject variability in response to TMS might limit its application in crossover or longitudinal studies

    What Do We Know About Medical Cannabis in Neurological Disorders and What Are the Next Steps?

    No full text
    Medical use of cannabis has been receiving growing attention over the last few decades in modern medicine. As we know that the endocannabinoid system is largely involved in neurological disorders, we focused on the scientific rationale of medical cannabis in three neurological disorders: amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease through pharmacological plausibility, clinical studies, and patients’ view. Clinical studies (randomized controlled trials, open-label studies, cohorts, and case reports) exploring medical cannabis in these disorders show different results depending on the methods and outcomes. Some show benefits on motor symptoms and others on non-motor symptoms and quality of life. Concerning patients’ view, several web surveys were collected, highlighting the real use of cannabis to relieve symptoms of neurological disorders, mostly outside a medical pathway. This anarchic use keeps questioning particularly in terms of risks: consumption of street cannabis, drug–drug interactions with usual medical treatment, consideration of medical history, and adverse reactions (psychiatric, respiratory, cardiovascular disorders, etc.), underlining the importance of a medical supervision. To date, most scientific data support the therapeutic potential of cannabis in neurological disorders. As far as patients and patients’ associations are calling for it, there is an urgent need to manage clinical studies to provide stronger evidence and secure medical cannabis use

    Transdermal Alcohol Measurements Using MOX Sensors in Clinical Trials

    No full text
    Human metabolism often results in the emission of many VOCs through the skin. Ethanol is one of volatile compounds which are evaporated by perspiration. The aim of our research consists to develop chemical sensors for monitoring ethanol emission after alcohol consumption. The interest of using chemical sensors is noninvasive measurement and controlling alcohol level in the human body and to make the link between these measurements and that in the blood or in the breath. Recent clinical trials demonstrated the feasibility and relevance of this measurement method. Metal oxide sensors were calibrated in respect of the thermodynamic conditions of the surface of the skin. In this paper we show the first sensor responses by perspiration

    Modular slowing of resting-state dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation

    No full text
    International audienceDynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis that variations of rs dFC speed and cognitive performance are selectively interrelated within specific functional subnetworks. In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction. We found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, the reduction in global dFC speed does not correlate with variations of cognitive performance in individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong correlations between performance variations in individual tasks-including Rapid Visual Processing (RVP, assessing sustained visual attention)-and dFC speed quantified at the level of functional sub-networks of interest. Providing a compromise between classic static FC (no time) and global dFC (no space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration independently for sub-networks overseeing different tasks. Importantly, we found that RVP performance robustly correlates with the modular dFC speed of a characteristic frontoparietal module

    Adaptability and reproducibility of a memory disruption rTMS protocol in the PharmaCog IMI European project

    Get PDF
    Transcranial magnetic stimulation (TMS) can interfere with cognitive processes, such as transiently impairing memory. As part of a multi-center European project, we investigated the adaptability and reproducibility of a previously published TMS memory interfering protocol in two centers using EEG or fMRI scenarios. Participants were invited to attend three experimental sessions on different days, with sham repetitive TMS (rTMS) applied on day 1 and real rTMS on days 2 and 3. Sixty-eight healthy young men were included. On each experimental day, volunteers were instructed to remember visual pictures while receiving neuronavigated rTMS trains (20 Hz, 900 ms) during picture encoding at the left dorsolateral prefrontal cortex (L-DLPFC) and the vertex. Mixed ANOVA model analyses were performed. rTMS to the L-DLPFC significantly disrupted recognition memory on experimental day 2. No differences were found between centers or between fMRI and EEG recordings. Subjects with lower baseline memory performances were more susceptible to TMS disruption. No stability of TMS-induced memory interference could be demonstrated on day 3. Our data suggests that adapted cognitive rTMS protocols can be implemented in multi-center studies incorporating standardized experimental procedures. However, our center and modality effects analyses lacked sufficient statistical power, hence highlighting the need to conduct further studies with larger samples. In addition, inter and intra-subject variability in response to TMS might limit its application in crossover or longitudinal studies
    corecore