509 research outputs found
Atoms in the Surf: Molecular Dynamics Simulation of the Kelvin-Helmholtz Instability using 9 Billion Atoms
We present a fluid dynamics video showing the results of a 9-billion atom
molecular dynamics simulation of complex fluid flow in molten copper and
aluminum. Starting with an atomically flat interface, a shear is imposed along
the copper-aluminum interface and random atomic fluctuations seed the formation
of vortices. These vortices grow due to the Kelvin-Helmholtz instability. The
resulting vortical structures are beautifully intricate, decorated with
secondary instabilities and complex mixing phenomena. This work performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.Comment: Description of video submitted to APS DFD Gallery of Fluid Motion
200
Mass-radius relationships for exoplanets
For planets other than Earth, interpretation of the composition and structure
depends largely on comparing the mass and radius with the composition expected
given their distance from the parent star. The composition implies a
mass-radius relation which relies heavily on equations of state calculated from
electronic structure theory and measured experimentally on Earth. We lay out a
method for deriving and testing equations of state, and deduce mass-radius and
mass-pressure relations for key materials whose equation of state is reasonably
well established, and for differentiated Fe/rock. We find that variations in
the equation of state, such as may arise when extrapolating from low pressure
data, can have significant effects on predicted mass- radius relations, and on
planetary pressure profiles. The relations are compared with the observed
masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth-
like,' likely with a proportionately larger core than Earth's, nominally 2/3 of
the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an
Fe-based core which is likely to be proportionately smaller than Earth's. GJ
1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy'
composition with a relatively large core or a relatively large proportion of
H2O. CoRoT-2b is less dense than the hydrogen relation, which could be
explained by an anomalously high degree of heating or by higher than assumed
atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation
for hydrogen, suggesting the presence of a significant amount of matter of
higher atomic number. CoRoT-3b lies close to the hydrogen relation. The
pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure
in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra
"rock" compositions. Responded to referee comment
Sleep disturbances in tension-type headache and migraine
Current research into the pathogenesis of tension-type headache (TTH) and
migraine is focused on altered nociceptive pain processing. Among the potential factors that
influence sensitization mechanisms, emotional stress, depression, or sleep disorders all have
an essential role: they increase the excitability of nociceptive firing and trigger hyperalgesic
responses. Sleep disturbances and headache disorders share common brain structures and
pathogenic mechanisms and TTH, migraine, and sleep disturbances often occur together;
for example, 50% of individuals who have either TTH or migraine have insomnia. Moreover,
insomnia and poor sleep quality have been associated with a higher frequency and intensity
of headache attacks, supporting the notion that severity and prevalence of sleep problems
correlate with headache burden. It should be noted that the association between headaches
and sleep problems is bidirectional: headache can promote sleep disturbances, and sleep
disturbances can also precede or trigger a headache attack. Therefore, a better understanding
of the factors that affect sleep quality in TTH and migraine can assist clinicians in determining
better and adequate therapeutic programs. In this review, the role of sleep disturbances in
headaches, and the association with depression, emotional stress, and pain sensitivity in
individuals with TTH or migraine are discussed
Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Assessing free-living physical activity using accelerometry : practical issues for researchers and practitioners
Physical activity is an integral component of a healthy lifestyle, with relationships documented between physical activity, chronic diseases, and disease risk factors. There is increasing concern that many people are not sufficiently active to benefit their health. Consequently, there is a need to determine the prevalence of physical activity engagement, identify active and inactive segments of the population, and evaluate the effectiveness of interventions. The aim of the present study was to identify and explain a number of methodological and decision-making processes associated with accelerometry, which is the most commonly used objective measure of physical activity in child and adult research.Specifically, this review addresses:(a) pre-data collection decisions,(b) data collection procedures,(c) processing of accelerometer data, and(d) outcome variables in relation to the research questions posed.An appraisal of the literature is provided to help researchers and practitioners begin field-based research, with recommendations offered for best practice. In addition, issues that require further investigation are identified and discussed to inform researchers and practitioners of the surrounding debates.Overall, the review is intended as a starting point for field-based physical activity research using accelerometers and as an introduction to key issues that should be considered and are likely to be encountered at this time.<br /
- …