9 research outputs found

    TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-γ production

    Get PDF
    To investigate if transporter associated with antigen processing (TAP)–1 is required for CD8+ T cell–mediated control of Toxoplasma gondii in vivo, we compared the resistance of TAP-1−/−, CD8−/−, and wild-type (WT) mice to infection with the parasite. Unexpectedly, TAP-1−/− mice displayed greater susceptibility than CD8−/−, β2-microglobulin−/− (β2m−/−), or WT mice to infection with an avirulent parasite strain. The decreased resistance of the TAP-1−/− mice correlated with a reduction in the frequency of activated (CD62Llow CD44hi) and interferon (IFN)-γ–producing CD4+ T cells. Interestingly, infected TAP-1−/− mice also showed reduced numbers of IFN-γ–producing natural killer (NK) cells relative to WT, CD8−/−, or β2m−/− mice, and after NK cell depletion both CD8−/− and WT mice succumbed to infection with the same kinetics as TAP-1−/− animals and displayed impaired CD4+ T cell IFN-γ responses. Moreover, adoptive transfer of NK cells obtained from IFN-γ+/+, but not IFN-γ−/−, animals restored the CD4+ T cell response of infected TAP-1−/− mice to normal levels. These results reveal a role for TAP-1 in the induction of IFN-γ–producing NK cells and demonstrate that NK cell licensing can influence host resistance to infection through its effect on cytokine production in addition to its role in cytotoxicity

    Host ER–parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in Toxoplasma gondii–infected dendritic cells

    Get PDF
    Toxoplasma gondii tachyzoites infect host cells by an active invasion process leading to the formation of a specialized compartment, the parasitophorous vacuole (PV). PVs resist fusion with host cell endosomes and lysosomes and are thus distinct from phagosomes. Because the parasite remains sequestered within the PV, it is unclear how T. gondii–derived antigens (Ag’s) access the major histocompatibility complex (MHC) class I pathway for presentation to CD8+ T cells. We demonstrate that recruitment of host endoplasmic reticulum (hER) to the PV in T. gondii–infected dendritic cells (DCs) directly correlates with cross-priming of CD8+ T cells. Furthermore, we document by immunoelectron microscopy the transfer of hER components into the PV, a process indicative of direct fusion between the two compartments. In strong contrast, no association between hER and phagosomes or Ag presentation activity was observed in DCs containing phagocytosed live or dead parasites. Importantly, cross-presentation of parasite-derived Ag in actively infected cells was blocked when hER retrotranslocation was inhibited, indicating that the hER serves as a conduit for the transport of Ag between the PV and host cytosol. Collectively, these findings demonstrate that pathogen-driven hER–PV interaction can serve as an important mechanism for Ag entry into the MHC class I pathway and CD8+ T cell cross-priming

    IL-10 regulates liver pathology in acute murine Schistosomiasis mansoni but is not required for immune down-modulation of chronic disease

    No full text
    We have used IL-10 gene knockout mice (IL-10T) to examine the role of endogenous IL-10 in the down-modulation of hepatic granuloma formation and lymphocyte responses that occurs in chronic infection with the helminth parasite Schistosoma mansoni. Although IL-10-deficient animals showed 20 to 30% mortality between 8 and 14 wk postinfection, they displayed no alterations in their susceptibility to infection and produced similar numbers of eggs as their wild-type littermates. The IL-10T mice displayed a significant increase in hepatic granuloma size at the acute stage of infection, which was associated with increased IFN-gamma, IL-2, IL-1beta, and TNF-alpha mRNA expression in liver and elevated Th1-type cytokine production by lymphoid cells. Despite developing an enhanced Th1-type cytokine response, the IL-10T mice showed no consistent decrease in their Th2-type cytokine profile. Surprisingly, although granulomatous inflammation was enhanced at the acute stage of infection, the livers of IL-10T mice displayed no significant increase in fibrosis and underwent normal immune down-modulation at the chronic stage of infection. Moreover, the down-modulated state could be induced in IL-10T mice by sensitizing the animals to schistosome eggs before infection, further demonstrating that the major down-regulatory mechanism is not dependent upon IL-10. We conclude that while IL-10 plays an important role in controlling acute granulomatous inflammation, it plays no essential role in the process of immune down-modulation in chronic schistosome infection

    Cord Factor and Peptidoglycan Recapitulate the Th17-Promoting Adjuvant Activity of Mycobacteria through Mincle/CARD9 Signaling and the Inflammasome

    Get PDF
    Although adjuvants are critical vaccine components, their modes of action are poorly understood. Here, we investigated the mechanisms by which the heat-killed mycobacteria in complete Freund’s adjuvant (CFA) promote T helper 17 (Th17) CD4(+) T cell responses. We found that IL-17 secretion by CD4(+) T cells following CFA immunization requires MyD88 and IL-1β/IL-1 receptor (IL-1R) signaling. Through measurement of antigen-specific responses after adoptive transfer of OTII cells, we confirmed that MyD88-dependent signaling controls Th17 differentiation rather than simply production of IL-17. Additional experiments showed that CFA-induced Th17 differentiation involves IL-1β processing by the inflammasome, as mice lacking caspase 1, ASC, or NLRP3 exhibit partially defective responses after immunization. Biochemical fractionation studies further revealed that peptidoglycan is the major component of heat-killed mycobacteria responsible for inflammasome activation. By assaying Il1b transcripts in the injection site skin of CFA-immunized mice, we found that signaling through the adaptor molecule CARD9 plays a major role in triggering pro-IL-1β expression. Moreover, we demonstrated that recognition of the mycobacterial glycolipid trehalose dimycolate (cord factor) by the C type lectin receptor mincle partially explains this CARD9 requirement. Importantly, purified peptidoglycan and cord factor administered in mineral oil synergized to recapitulate the Th17-promoting activity of CFA, and, as expected, this response was diminished in caspase 1-and CARD9-deficient mice. Taken together, these findings suggest a general strategy for the rational design of Th17-skewing adjuvants by combining agonists of the CARD9 pathway with inflammasome activators

    The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1)

    No full text
    Schistosoma mansoni eggs contain factors that trigger potent Th2 responses in vivo and condition mouse dendritic cells (DCs) to promote Th2 lymphocyte differentiation. Using an in vitro bystander polarization assay as the readout, we purified and identified the major Th2-inducing component from soluble egg extract (SEA) as the secreted T2 ribonuclease, omega-1. The Th2-promoting activity of omega-1 was found to be sensitive to ribonuclease inhibition and did not require MyD88/TRIF signaling in DCs. In common with unfractioned SEA, the purified native protein suppresses lipopolysaccharide-induced DC activation, but unlike SEA, it fails to trigger interleukin 4 production from basophils. Importantly, omega-1–exposed DCs displayed pronounced cytoskeletal changes and exhibited decreased antigen-dependent conjugate formation with CD4(+) T cells. Based on this evidence, we hypothesize that S. mansoni omega-1 acts by limiting the interaction of DCs with CD4(+) T lymphocytes, thereby lowering the strength of the activation signal delivered
    corecore