131 research outputs found

    Prevalence of erectile dysfunction in patients with abdominal aortic aneurysm: an exploratory study

    Get PDF
    Erectile dysfunction (ED) is defined as the recurrent inability to achieve and maintain a satisfactory erection for sexual intercourse. Many studies have highlighted that ED shares common cardiovascular risk factors with cardiovascular disease. No data are reported about the prevalence of ED in patients with the abdominal aortic aneurysm (AAA). The aim of our study was to investigate the preoperative information given about sexual functions of patients undergoing endovascular aneurysm repair (EVAR) and to compare it with the presence and severity of steno-occlusive atherosclerotic lesions of the pelvic arterial tree at pre-operative Computed Tomography Angiography (CTA).Methods: We prospectively enrolled all men patients who underwent elective EVAR from September to November 2021. Preoperative ED was evaluated using the International Index of Erectile Function (IIEF-5) questionnaire. Preoperative imaging was routinely performed with CTA scan of the abdominal aorta and iliac-pelvic district. An innovative score of pelvic arterial disease associated to AAA was defined, dividing the iliac district in 4 zones attributing a grading of severity for each zone bilaterally (score ranges 0–24). Linear regression analysis was used to correlate IIEF-5 score to anatomical score of pelvic arterial steno-occlusive disease.Results: A total of 25 patients were enrolled. Median age was 74 ± 5.3 years. IIEF-5 average score was 14.8 ± 7.1. Eight cases (32%) had severe ED; one case (4%) had moderate, five patients (20%) had mild to moderate ED; five patients (20%) had mild ED, and 6 (24%) patients had no ED. CTA evaluation revealed an average anatomical score of 7.9 ± 4.5. Pelvic disease was considered moderate-severe in 20 cases (80%) and not significant in 20% (five cases). Linear regression analysis confirmed the hypothesis that a more diseased pelvic arterial tree was correlated to a more severe ED (Y = -1.531* × + 26.35 [slope CI: -1.946 to-1.117, p < 0.0001]).Conclusion: Although typically unreported, the prevalence of ED associated to AAA was found to be high. A vasculogenic origin of ED in patients with AAA is plausible and may be easily confirmed by the evaluation of pelvic arterial distribution at angio-CT performed for EVAR planning. Our proposed “MAPPING AND SCORING SHEET” may help to identify the vasculogenic origin of ED in AAA patients

    Endovascular Abdominal Aortic Aneurysm Repair With Ovation Alto Stent Graft: Protocol for the ALTAIR (ALTo endogrAft Italian Registry) Study

    Get PDF
    Background: Since 2010, the Ovation Abdominal Stent Graft System has offered an innovative sealing option for abdominal aortic aneurysm (AAA) by including a sealing ring filled with polymer 13 mm from the renal arteries. In August 2020, the redesigned Ovation Alto, with a sealing ring 6 mm closer to the top of the fabric, received CE Mark approval. Objective: This registry study aims to evaluate intraoperative, perioperative, and postoperative results in patients treated by the Alto stent graft (Endologix Inc.) for elective AAA repair in a multicentric consecutive experience. Methods: All consecutive eligible patients submitted to endovascular aneurysm repair (EVAR) by Alto Endovascular AAA implantation will be included in this analysis. Patients will be submitted to EVAR procedures based on their own preferences, anatomical features, and operators experience. An estimated number of 300 patients submitted to EVAR with Alto stent graft should be enrolled. It is estimated that the inclusion period will be 24 months. The follow-up period is set to be 5 years. Full data sets and cross-sectional images of contrast-enhanced computed tomography scan performed before EVAR, at the first postoperative month, at 24 or 36 months, and at 5-year follow-up interval will be reported in the central database for a centralized core laboratory review of morphological changes. The primary endpoint of the study is to evaluate the technical and clinical success of EVAR with the Alto stent graft in short- (90-day), mid- (1-year), and long-term (5-year) follow-up periods. The following secondary endpoints will be also addressed: operative time; intraoperative radiation exposure; contrast medium usage; AAA sac shrinkage at 12-month and 5-year follow-up; any potential role of patients' baseline characteristics, valuated on preoperative computed tomography angiographic study, and of device configuration (number of component) in the primary endpoint. Results: The study is currently in the recruitment phase and the final patient is expected to be treated by the end of 2023 and then followed up for 5 years. A total of 300 patients will be recruited. Analyses will focus on primary and secondary endpoints. Updated results will be shared at 1- and 3-5-year follow-ups. Conclusions: The results from this registry study could validate the safety and effectiveness of the new design of the Ovation Alto Stent Graft. The technical modifications to the endograft could allow for accommodation of a more comprehensive range of anatomies on-label

    Germline CDH1 deletions in hereditary diffuse gastric cancer families

    Get PDF
    Germline CDH1 point or small frameshift mutations can be identified in 30–50% of hereditary diffuse gastric cancer (HDGC) families. We hypothesized that CDH1 genomic rearrangements would be found in HDGC and identified 160 families with either two gastric cancers in first-degree relatives and with at least one diffuse gastric cancer (DGC) diagnosed before age 50, or three or more DGC in close relatives diagnosed at any age. Sixty-seven carried germline CDH1 point or small frameshift mutations. We screened germline DNA from the 93 mutation negative probands for large genomic rearrangements by Multiplex Ligation-Dependent Probe Amplification. Potential deletions were validated by RT–PCR and breakpoints cloned using a combination of oligo-CGH-arrays and long-range-PCR. In-silico analysis of the CDH1 locus was used to determine a potential mechanism for these rearrangements. Six of 93 (6.5%) previously described mutation negative HDGC probands, from low GC incidence populations (UK and North America), carried genomic deletions (UK and North America). Two families carried an identical deletion spanning 193 593 bp, encompassing the full CDH3 sequence and CDH1 exons 1 and 2. Other deletions affecting exons 1, 2, 15 and/or 16 were identified. The statistically significant over-representation of Alus around breakpoints indicates it as a likely mechanism for these deletions. When all mutations and deletions are considered, the overall frequency of CDH1 alterations in HDGC is ∼46% (73/160). CDH1 large deletions occur in 4% of HDGC families by mechanisms involving mainly non-allelic homologous recombination in Alu repeat sequences. As the finding of pathogenic CDH1 mutations is useful for management of HDGC families, screening for deletions should be offered to at-risk families

    The contribution of large genomic deletions at the CDKN2A locus to the burden of familial melanoma

    Get PDF
    Mutations in two genes encoding cell cycle regulatory proteins have been shown to cause familial cutaneous malignant melanoma (CMM). About 20% of melanoma-prone families bear a point mutation in the CDKN2A locus at 9p21, which encodes two unrelated proteins, p16INK4a and p14ARF. Rare mutations in CDK4 have also been linked to the disease. Although the CDKN2A gene has been shown to be the major melanoma predisposing gene, there remains a significant proportion of melanoma kindreds linked to 9p21 in which germline mutations of CDKN2A have not been identified through direct exon sequencing. The purpose of this study was to assess the contribution of large rearrangements in CDKN2A to the disease in melanoma-prone families using multiplex ligation-dependent probe amplification. We examined 214 patients from independent pedigrees with at least two CMM cases. All had been tested for CDKN2A and CDK4 point mutation, and 47 were found positive. Among the remaining 167 negative patients, one carried a novel genomic deletion of CDKN2A exon 2. Overall, genomic deletions represented 2.1% of total mutations in this series (1 of 48), confirming that they explain a very small proportion of CMM susceptibility. In addition, we excluded a new gene on 9p21, KLHL9, as being a major CMM gene

    New challenges for BRCA testing:a view from the diagnostic laboratory

    Get PDF
    Increased demand for BRCA testing is placing pressures on diagnostic laboratories to raise their mutation screening capacity and handle the challenges associated with classifying BRCA sequence variants for clinical significance, for example interpretation of pathogenic mutations or variants of unknown significance, accurate determination of large genomic rearrangements and detection of somatic mutations in DNA extracted from formalin-fixed, paraffin-embedded tumour samples. Many diagnostic laboratories are adopting next-generation sequencing (NGS) technology to increase their screening capacity and reduce processing time and unit costs. However, migration to NGS introduces complexities arising from choice of components of the BRCA testing workflow, such as NGS platform, enrichment method and bioinformatics analysis process. An efficient, cost-effective accurate mutation detection strategy and a standardised, systematic approach to the reporting of BRCA test results is imperative for diagnostic laboratories. This review covers the challenges of BRCA testing from the perspective of a diagnostics laboratory

    Measurement of the light component (p+He) energy spectrum with the DAMPE space mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE) is a space-based particle detector launched in a Sun- synchronous orbit on December 17th, 2015 from the Jiuquan Satellite Launch Center, in China. It has been taking data very smoothly for more than 5 years. Science goals of the DAMPE mission include the study of the electron-positron energy spectrum, the study of galactic cosmic-rays, gamma-ray astronomy, and indirect dark matter search. Performing precise measurements of light elements in space, the most abundant components of cosmic radiation, is necessary to address major problems in galactic cosmic ray acceleration and propagation mechanisms. Selecting a combined proton and helium sample (instead of proton or helium alone) allows larger efficiency and purity, also minimizing systematic effects in the reconstruction of the energy spectrum, due to possible cross-contaminations. The use of looser analysis cuts allows collecting larger statistics thus extending the covered energy range and providing a link between direct and indirect cosmic- ray measurements. The measurement of the p+He energy spectrum up to ∼ 150 TeV will be presented, along with a discussion on the features of the spectrum and a comparison with other experimental results

    Observations of Forbush Decreases of Cosmic-Ray Electrons and Positrons with the Dark Matter Particle Explorer

    Get PDF
    The Forbush decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections or high-speed streams from coronal holes. It has been mainly explored with the ground-based neutron monitor network, which indirectly measures the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmospheric atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relatively small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic-ray electrons and positrons have just been investigated by the PAMELA experiment in the low-energy range (<5 GeV) with limited statistics. In this paper, we study the FD event that occurred in 2017 September with the electron and positron data recorded by the Dark Matter Particle Explorer. The evolution of the FDs from 2 GeV to 20 GeV with a time resolution of 6 hr are given. We observe two solar energetic particle events in the time profile of the intensity of cosmic rays, the earlier, and weaker, one has not been shown in the neutron monitor data. Furthermore, both the amplitude and recovery time of fluxes of electrons and positrons show clear energy dependence, which is important in probing the disturbances of the interplanetary environment by the coronal mass ejections

    Machine learning methods for helium flux analysis with DAMPE experiment

    Get PDF
    DAMPE is a space-borne experiment for the measurement of the cosmic-ray fluxes at energies up to around 100 TeV per nucleon. At energies above several tens of TeV, the electronics of DAMPE calorimeter would saturate, leaving certain bars with no energy recorded. It is also observed that at high energies the tracker and the scintillator detector that serve for the charge identification become heavily populated with back-splash tracks. Both effects interfere in precise measurements of the helium flux at highest energies. In the present contribution we discuss the application of machine learning techniques for the treatment of DAMPE data, to compensate the calorimeter energy lost by saturation and to identify helium events
    corecore