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DAMPE is a space-borne experiment for the measurement of the cosmic-ray fluxes at energies up
to around 100 TeV per nucleon. At energies above several tens of TeV, the electronics of DAMPE
calorimeter would saturate, leaving certain bars with no energy recorded. It is also observed that
at high energies the tracker and the scintillator detector that serve for the charge identification
become heavily populated with back-splash tracks. Both effects interfere in precise measurements
of the helium flux at highest energies. In the present contribution we discuss the application of
machine learning techniques for the treatment of DAMPE data , to compensate the calorimeter

energy lost by saturation and to identify helium events.
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1. Introduction

Machine learning (ML) methods have proven to be very efficient in different scientific domains.
In the specific case of cosmic ray (CR) physics, ML plays a key role for different applications as, for
example, for event reconstruction in ground-based experiments [1], source recognition [2] etc. In
the current work, we focus on the application of ML to the analysis of the helium energy spectrum
for the DAMPE experiment, aiming to avoid the effects due to instrumental issues of our detector
at high energies.

DAMPE is a space-borne particle detector installed on-board a satellite orbiting around the
Earth in a Sun-synchronous way at 500 km of altitude since December 17th, 2015. The instrument
is composed bt four major parts, here described in order of passage of CRs entering from the top of
the satellite:

* PSD — double layer (for x and y measurements) Plastic Scintillator Detector composed by 82
scintillator bars 884 x 28 x 10 mm? each. The main purpose of PSD is to measure the charge
information of the incomming particles with Z from 1 to 26 [3].

* STK — STK - Silicon-Tungsten tracKer converter composed by 6 layers of strip tracking
detectors providing an excellent track reconstruction and by 3 thin tungsten plates inserted in
order to enhance the photon conversion in electron-positron pairs. STK provides an excellent
track reconstruction and also enhances the gamma-ray conversion [4].

* BGO - BGO - a deep electromagnetic calorimeter ( 31.5 radiation lengths, 1.6 nuclear
interaction lenghts). It is made of 14 layers of Bismuth-Germanium-Oxygen crystal bars, 22
bars (25 x 25 x 600 mm?) in each layer [5, 6]. Each consecutive layer is oriented orthogonally
to the previous one, allowing to measure the CR showers in three dimensions.

* NUD - NeUtron Detector to discriminate between nuclei and electron/photon events. [7].

The DAMPE Collaboration already published the results about the measurements of proton [8],
helium [9] and electron/positron [10] energy spectra, and some preliminary results about gamma-ray
observations were also presented [11]. These studies show interesting spectral features which help
to push our understanding of the CR astrophysics and constrain the dark matter models [12—14].

2. BGO saturation

The DAMPE BGO calorimeter has broad and highly linear dynamic range going up to ~10
TeV of energy deposit per crystal. However, at even higher energy deposits the read-out electronics
of BGO would saturate, therefore the bar will have a null recorded energy deposit. An example of
event with two saturated bars is shown in figure 1. Such saturated bars are easily recognised as they
are always next to the bars with energy deposit larger than 25GeV. However, we look for a method
that allows to recover the information about the missing energy. A recent paper [16] describes
an analytical method to do it. The method relies on analytical function dependent on the energy
deposits in the bars adjacent to a saturated bars.
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Figure 1: An illustration of a helium event with BGO readout saturation. The pre-correction total energy
deposit is 49.4 TeV. The two empty BGO crystals on the shower axis are saturated, while the other empty
crystals on the edge of shower are the ones without any deposited energy (or, the energy deposit is smaller
than the noise threshold).

We developed an alternative approach using convolutional neural networks (CNN). This class
of ML methods is widely used for image recognition, so it is very appropriate to be used for the
BGO signals, combined in a single 14x22 matrix. As additional information we provide the neural
network with the inclination values on X-Z and Y-Z projections (the coordinate system of DAMPE
is illustrated on figure 1). The target of training is the energy missing due saturation. The training
was performed on the Monte-Carlo sample of helium from 1 to 100 TeV.

The last layer of BGO is different from the upper layers: the optical filters on the ends of the
BGO bars are adjusted to have more sensitivity at low energy deposited. This feature is important
for the better electron-proton discrimination, which relies mainly on the distribution of signals in
the last layer of BGO. However, this also means that the saturation happens at lower energies in the
last layer. Figure 2 illustrates the fact that the missing energy for the last layer bars is substantially
lower than that for the middle layers. This means also that the saturation in the last layer happens
much more often, especially at lower energies. We split the problem of the saturation energy
reconstruction in two. First, we focus on the reconstruction for the isolated saturated bars (i.e. not
adjacent to any other saturated bar) in the BGO last layer. Second, we recover the adjacent saturated
bars and the bars in the middle of BGO. The second step includes also the adjacent saturated bars
where some of those bars are situated in the last layer. In the text below we will call the first class
of the saturated bars as last layer (LL) saturation and the second class as the middle layer (MidL)
saturation. Note that some events may have saturated bars of both classes. The frequencies of
appearance of the saturated bars of these two classes are shown on figure 3.

We train two distinct CNN models with the same architecture as described above for recon-
structing first the missing energy of the LL saturated bars and second the missing energy of the
MidL saturated bars. Note that the paper [16] describes only the reconstruction of isolated saturated
bars. The performance of the model is demonstrated in figure 4 for the events with a single isolated
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classes. Note that at highest energies the MidL
start appearing more often than the LL saturated
bars. This is not because the last layer bars are
less often saturated at high energy, but because

Figure 2: Missing energy due saturation in the
last layer of BGO (blue histogram) and upper
layers (orange histogram). Distributions build

using helium MC. they start being adjacent to other saturated bars

and so are classified as MidL ones.

saturated bar and 5 for all events.

Comparing with the performance reported in [16] paper we obtain approximately twice more
precise reconstruction. Another advantage of the ML approach is that the CNN model does not have
any problem of reconstructing the missing energy in events with multiple adjacent saturated bars.
The analytical method described in [16] uses the signals from the bars adjacent to the saturated one,
so it is not applicable for the cases of heavily saturated events. Such events, as suggested by the
MC simulations and the observed flight data, are quite common at kinetic energy close to 100 TeV
and above (that is close to the sensitivity limit of DAMPE), see figure 3. Thus the ML approach is
preferential for the reconstruction of the saturated bars in the BGO calorimeter. It should be noted
that the CNN model trained to reconstruct the missing energy for the helium incident CR, when
being applied to different species adds some bias. Thus, for example, for the carbon flux analysis
one needs to train a separate model. This is not specific for the ML model as the same is true for
the analytical model too.

3. Helium charge recognition

The measurement of the helium energy spectrum measured by DAMPE [9] has been obtained
by following the analysis steps here listed and applied both on on-orbit data and MC simulations of
helium events performed with the GEANT4 toolkit [17]:

1. Pre-selection of well reconstructed events fully contained inside the whole DAMPE detector.

2. Charge selection of the events performed by using the charge measurements provided by the
PSD and the first layer of the STK.

3. Template fitting of the PSD charge distributions with templates from the MC samples of
proton and helium events, in order to estimate the proton pollution inside the selected helium
candidate event sample.
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Figure 4: Top panel: Ratio between the recon-
structed BGO energy (E;or») and the true de-
posited energy (Es;m.,) as function of the kinetic
energy of a particle for the events with a single
isolated saturated bar. Bottom panel: uncertainty
of the reconstruction.

Figure 5: Top panel: Ratio between the recon-
structed BGO energy (E.,r) and the true de-
posited energy (E;,,,) as function of the kinetic
energy of a particle for all events with saturated
bars. Bottom panel: uncertainty of the recon-
struction.

4. Unfolding procedure applied in order to obtain the final helium energy spectrum.

The advantage of this approach is that the PSD charge distribution obtained after the second
step shows very clean and well separated peaks of protons and helium nuclei. However, this comes
on a price of relatively low effective acceptance. Many events with first inelastic interaction early
in the particle path through DAMPE get rejected by the imposed selections.

The alternative ML approach relies on the classification model which is trained to separate
protons and helium nuclei. In this case we apply very loose charge selections, which allows to
have larger effective acceptance. This is crucially important for the highest energy bins where the
statistics is very low. The template fit from the step three is then applied not to the PSD charge
distributions but to the distributions of the ML model probability output (classification ML models
have the possibility to estimate the chance that the input sample belongs to one class of events or
another).

We use the following charge selections: we accept all events with energy in both PSD layers
being below 10 MeV and events with maximal PSD signal over two layers above 10 MeV and
average STK signal over the first layer below 1000./(Spsp — 10.)2 +500. ADC where Spgp is the
average PSD signal over both layers. The cut line and the distribution of the events on the PSD-STK
plane is shown in figure 6.

We used a boosted decision tree classifier with XGBoost open-source library [18]. We applied
the following training hyperparameters: maximal tree depth 4, at least 100 entries in the leaves,
number of estimators 850. An example of template fit of ML score for one of the energy bins is
shown on figure 7. To select the helium candidates and estimate the background contamination
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Figure 7: Example of the template fitting of

Figure 6: Two-dimensional distribution of STK flight data distribution of ML score (blue his-
mean signal over first layer versus PSD mean togram) with a sum of helium, proton and carbon
signal over two layers. The events below the red- MC contributions for specific recorded energy
dashed line are selected for the analysis. The bin (on the title of the figure). The red verti-
peaks, visible on the diagonal are (starting from cal dashed line shows the suggested limit of 0.95
the bottom left corner): p, He, Li, Be etc. above which the helium candidates are selected

and the background contamination is estimated.

we cut at ML score 0.95. The helium signal peak is situated to the right from this limit. The
background contamination is about 1% at incident energy around 1TeV.

The ML analysis is promising as it can help to extend the energy range of the reconstructed
fluxes. For example, in the standard analysis [9] the number of selected helium candidate events in
the deposited energy bin from 1 to 1.26 TeV is 13463, whereas the ML approach allows selecting
15924 helium candidates, or ~18% more. Such an increase can be indispensable for the highest
energy bins. Currently, we are starting from the study of the helium flux with the ML method in
order to apply the same procedure to the analysis of carbon energy spectrum.

4. Conclusions

Machine learning is a powerful tool that allows to recover the detector imperfections and
analyse the data efficiently. In this contribution we presented the ML models for the reconstruction
of the energy lost due saturation in the read out electronics of DAMPE calorimeter BGO, and for
helium recognition. The model for BGO saturation correction is not only more precise than the
concurrent analytical model, but it is also applicable for the most energetic events. The helium
selection model is interesting due to its increased effective acceptance, which can potentially extend
the flux measurement. The group is currently working on the tuning the models and extending their
application to the heavier elements.
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